Nuprl Lemma : deliver-msg_wf
∀[M:Type ─→ Type]
  ∀[t:ℕ]. ∀[x:Id]. ∀[m:pMsg(P.M[P])]. ∀[L:LabeledDAG(pInTransit(P.M[P]))]. ∀[Cs:component(P.M[P]) List].
    (deliver-msg(t;m;x;Cs;L) ∈ System(P.M[P])) 
  supposing Continuous+(P.M[P])
Proof
Definitions occuring in Statement : 
deliver-msg: deliver-msg(t;m;x;Cs;L)
, 
System: System(P.M[P])
, 
pInTransit: pInTransit(P.M[P])
, 
component: component(P.M[P])
, 
pMsg: pMsg(P.M[P])
, 
ldag: LabeledDAG(T)
, 
Id: Id
, 
list: T List
, 
strong-type-continuous: Continuous+(T.F[T])
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
list_accum_wf, 
System_wf, 
nil_wf, 
subtype_rel_product, 
list_wf, 
subtype_rel_list, 
subtype_rel_self, 
deliver-msg-to-comp_wf, 
component_wf, 
ldag_wf, 
pInTransit_wf, 
pMsg_wf, 
Id_wf, 
nat_wf, 
strong-type-continuous_wf
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[t:\mBbbN{}].  \mforall{}[x:Id].  \mforall{}[m:pMsg(P.M[P])].  \mforall{}[L:LabeledDAG(pInTransit(P.M[P]))].
    \mforall{}[Cs:component(P.M[P])  List].
        (deliver-msg(t;m;x;Cs;L)  \mmember{}  System(P.M[P])) 
    supposing  Continuous+(P.M[P])
Date html generated:
2015_07_23-AM-11_08_38
Last ObjectModification:
2015_01_29-AM-00_09_26
Home
Index