Nuprl Lemma : deliver-msg_wf

[M:Type ─→ Type]
  ∀[t:ℕ]. ∀[x:Id]. ∀[m:pMsg(P.M[P])]. ∀[L:LabeledDAG(pInTransit(P.M[P]))]. ∀[Cs:component(P.M[P]) List].
    (deliver-msg(t;m;x;Cs;L) ∈ System(P.M[P])) 
  supposing Continuous+(P.M[P])


Proof




Definitions occuring in Statement :  deliver-msg: deliver-msg(t;m;x;Cs;L) System: System(P.M[P]) pInTransit: pInTransit(P.M[P]) component: component(P.M[P]) pMsg: pMsg(P.M[P]) ldag: LabeledDAG(T) Id: Id list: List strong-type-continuous: Continuous+(T.F[T]) nat: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ─→ B[x] universe: Type
Lemmas :  list_accum_wf System_wf nil_wf subtype_rel_product list_wf subtype_rel_list subtype_rel_self deliver-msg-to-comp_wf component_wf ldag_wf pInTransit_wf pMsg_wf Id_wf nat_wf strong-type-continuous_wf

Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[t:\mBbbN{}].  \mforall{}[x:Id].  \mforall{}[m:pMsg(P.M[P])].  \mforall{}[L:LabeledDAG(pInTransit(P.M[P]))].
    \mforall{}[Cs:component(P.M[P])  List].
        (deliver-msg(t;m;x;Cs;L)  \mmember{}  System(P.M[P])) 
    supposing  Continuous+(P.M[P])



Date html generated: 2015_07_23-AM-11_08_38
Last ObjectModification: 2015_01_29-AM-00_09_26

Home Index