Nuprl Lemma : is-dag-append
∀[T:Type]. ∀[g1,g2:LabeledGraph(T)].  (is-dag(lg-append(g1;g2))) supposing (is-dag(g2) and is-dag(g1))
Proof
Definitions occuring in Statement : 
is-dag: is-dag(g)
, 
lg-append: lg-append(g1;g2)
, 
labeled-graph: LabeledGraph(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Lemmas : 
lg-edge_wf, 
lg-append_wf, 
int_seg_wf, 
lg-size_wf, 
member-less_than, 
nat_wf, 
is-dag_wf, 
labeled-graph_wf, 
lg-size-append, 
lg-edge-append, 
less_than_transitivity1, 
le_weakening, 
lelt_wf, 
subtract_wf
Latex:
\mforall{}[T:Type].  \mforall{}[g1,g2:LabeledGraph(T)].
    (is-dag(lg-append(g1;g2)))  supposing  (is-dag(g2)  and  is-dag(g1))
Date html generated:
2015_07_22-PM-00_29_47
Last ObjectModification:
2015_01_28-PM-11_34_08
Home
Index