Step
*
1
1
1
of Lemma
lg-acyclic-has-source
1. [T] : Type
2. g : LabeledGraph(T)@i
3. 0 < lg-size(g)
4. ∀i:ℕlg-size(g). ∃j:ℕlg-size(g). lg-edge(g;j;i)
⊢ ∃i:ℕlg-size(g). lg-connected(g;i;i)
BY
{ ((Skolemize (-1) `f' THENA Auto) THEN Assert ⌈∀m:ℕ+. ∀n:ℕ. lg-connected(g;f^n + m 0;f^n 0)⌉⋅) }
1
.....assertion.....
1. [T] : Type
2. g : LabeledGraph(T)@i
3. 0 < lg-size(g)
4. ∀i:ℕlg-size(g). ∃j:ℕlg-size(g). lg-edge(g;j;i)
5. f : i:ℕlg-size(g) ─→ ℕlg-size(g)
6. ∀i:ℕlg-size(g). lg-edge(g;f i;i)
⊢ ∀m:ℕ+. ∀n:ℕ. lg-connected(g;f^n + m 0;f^n 0)
2
1. [T] : Type
2. g : LabeledGraph(T)@i
3. 0 < lg-size(g)
4. ∀i:ℕlg-size(g). ∃j:ℕlg-size(g). lg-edge(g;j;i)
5. f : i:ℕlg-size(g) ─→ ℕlg-size(g)
6. ∀i:ℕlg-size(g). lg-edge(g;f i;i)
7. ∀m:ℕ+. ∀n:ℕ. lg-connected(g;f^n + m 0;f^n 0)
⊢ ∃i:ℕlg-size(g). lg-connected(g;i;i)
Latex:
Latex:
1. [T] : Type
2. g : LabeledGraph(T)@i
3. 0 < lg-size(g)
4. \mforall{}i:\mBbbN{}lg-size(g). \mexists{}j:\mBbbN{}lg-size(g). lg-edge(g;j;i)
\mvdash{} \mexists{}i:\mBbbN{}lg-size(g). lg-connected(g;i;i)
By
Latex:
((Skolemize (-1) `f' THENA Auto) THEN Assert \mkleeneopen{}\mforall{}m:\mBbbN{}\msupplus{}. \mforall{}n:\mBbbN{}. lg-connected(g;f\^{}n + m 0;f\^{}n 0)\mkleeneclose{}\mcdot{})
Home
Index