Step
*
2
1
1
of Lemma
lg-size-deliver-msg-general
.....wf.....
1. M : Type ─→ Type
2. Continuous+(P.M[P])
3. t : ℕ
4. x : Id
5. m : pMsg(P.M[P])
⊢ λCs.∀X:component(P.M[P]) List. ∀G:LabeledDAG(pInTransit(P.M[P])).
(lg-size(G) ≤ lg-size(snd(accumulate (with value S and list item C):
deliver-msg-to-comp(t;m;x;S;C)
over list:
Cs
with starting value:
<X, G>)))) ∈ (component(P.M[P]) List) ─→ ℙ
BY
{ (RepeatFor 4 (MemCD)
THEN Try (QuickAuto)
THEN (GenConcl ⌈accumulate (with value S and list item C):
deliver-msg-to-comp(t;m;x;S;C)
over list:
Cs
with starting value:
<X, G>)
= p
∈ (component(P.M[P]) List × LabeledDAG(pInTransit(P.M[P])))⌉⋅
THEN Auto
)) }
Latex:
Latex:
.....wf.....
1. M : Type {}\mrightarrow{} Type
2. Continuous+(P.M[P])
3. t : \mBbbN{}
4. x : Id
5. m : pMsg(P.M[P])
\mvdash{} \mlambda{}Cs.\mforall{}X:component(P.M[P]) List. \mforall{}G:LabeledDAG(pInTransit(P.M[P])).
(lg-size(G) \mleq{} lg-size(snd(accumulate (with value S and list item C):
deliver-msg-to-comp(t;m;x;S;C)
over list:
Cs
with starting value:
<X, G>)))) \mmember{} (component(P.M[P]) List) {}\mrightarrow{} \mBbbP{}
By
Latex:
(RepeatFor 4 (MemCD)
THEN Try (QuickAuto)
THEN (GenConcl \mkleeneopen{}accumulate (with value S and list item C):
deliver-msg-to-comp(t;m;x;S;C)
over list:
Cs
with starting value:
<X, G>)
= p\mkleeneclose{}\mcdot{}
THEN Auto
))
Home
Index