Nuprl Lemma : vr_rsub_to_sub

n,m:.  (m - n ~ m - n)


Proof not projected




Definitions occuring in Statement :  all: x:A. B[x] subtract: n - m int: sqequal: s ~ t rsub: x - y
Definitions :  CollapseTHEN: Error :CollapseTHEN,  Unfold: Error :Unfold,  uall: [x:A]. B[x] function: x:A  B[x] all: x:A. B[x] sqequal: s ~ t not: A less_than: a < b isect: x:A. B[x] uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) int: subtype_rel: A r B tunion: x:A.B[x] b-union: A  B real: sq_type: SQType(T) rsub: x - y ge: i  j  le: A  B strong-subtype: strong-subtype(A;B) member: t  T equal: s = t radd: r + s rminus: -(r) tactic: Error :tactic,  callbyvalue: callbyvalue ifthenelse: if b then t else f fi  is-rational: is-rational(r) spread: spread def outl: outl(x) inl: inl x  pair: <a, b> lambda: x.A[x] apply: f a qmul: r * s minus: -n natural_number: $n Auto: Error :Auto,  value-type: value-type(T) qadd: r + s inf-add: x + y subtract: n - m rationals: union: left + right quotient: x,y:A//B[x; y] bfalse: ff btrue: tt ispair: ispair(z;a;b) isint: isint(z;a;b) bor: p q multiply: n * m callbyvalueall: callbyvalueall base: Base guard: {T} implies: P  Q add: n + m fpf: a:A fp-B[a] eclass: EClass(A[eo; e]) MaAuto: Error :MaAuto,  has-value: has-value(a) subtype: S  T so_lambda: x.t[x] set: {x:A| B[x]}  qle: r  s nat: infinitesmal: Infinitesmal void: Void universe: Type bool: Id: Id atom: Atom$n
Lemmas :  Id_wf Id-has-value real-has-value rational-is-real bool_wf tunion_wf member_wf qle_wf infinitesmal_wf nat_wf subtract-elim int_subtype_base rationals_wf ifthenelse_wf qadd_wf qmul_wf int-value-type value-type_wf subtype_base_sq real_wf rsub_wf

\mforall{}n,m:\mBbbZ{}.    (m  -  n  \msim{}  m  -  n)


Date html generated: 2012_02_20-PM-03_32_23
Last ObjectModification: 2012_02_02-PM-01_55_06

Home Index