Nuprl Lemma : Accum-class-es-sv

[Info,A:Type]. [es:EO+(Info)]. [X:EClass(A)]. [init:Id  bag(Top)]. [f:Top].
  (es-sv-class(es;Accum-class(f;init;X))) supposing ((l:Id. (bag-size(init l)  1)) and es-sv-class(es;X))


Proof not projected




Definitions occuring in Statement :  Accum-class: Accum-class(f;init;X) es-sv-class: es-sv-class(es;X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) Id: Id uimplies: b supposing a uall: [x:A]. B[x] top: Top le: A  B all: x:A. B[x] apply: f a function: x:A  B[x] natural_number: $n universe: Type bag-size: bag-size(bs) bag: bag(T)
Definitions :  so_lambda: x.t[x] label: ...$L... t ge: i  j  and: P  Q lelt: i  j < k so_lambda: x y.t[x; y] length: ||as|| implies: P  Q not: A int_seg: {i..j} lt_int: i <z j bnot: b le_int: i z j bfalse: ff btrue: tt eq_int: (i = j) ifthenelse: if b then t else f fi  ycomb: Y lifting-gen-list-rev: lifting-gen-list-rev(n;bags) lifting-gen-rev: lifting-gen-rev(n;f;bags) lifting2: lifting2(f;abag;bbag) select: l[i] nat: false: False member: t  T lifting-2: lifting-2(f) rec-combined-class-opt-1: F|X,Prior(self)?init| Accum-class: Accum-class(f;init;X) le: A  B top: Top so_apply: x[s] so_apply: x[s1;s2] prop: uimplies: b supposing a uall: [x:A]. B[x] all: x:A. B[x] subtype: S  T eclass: EClass(A[eo; e])
Lemmas :  es-sv-class_wf all_wf nat_wf Id_wf bag_wf single-bag_wf lelt_wf bag-combine_wf length_wf_nat non_neg_length length_cons length_wf_nil length_nil length_wf es-interface-top event-ordering+_wf event-ordering+_inc es-E_wf eclass_wf select_wf int_seg_wf le_wf rec-comb_wf top_wf bag-size_wf rec-combined-class-opt-1-es-sv

\mforall{}[Info,A:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(A)].  \mforall{}[init:Id  {}\mrightarrow{}  bag(Top)].  \mforall{}[f:Top].
    (es-sv-class(es;Accum-class(f;init;X)))  supposing 
          ((\mforall{}l:Id.  (bag-size(init  l)  \mleq{}  1))  and 
          es-sv-class(es;X))


Date html generated: 2012_02_20-PM-02_59_32
Last ObjectModification: 2012_02_07-PM-01_21_08

Home Index