Nuprl Lemma : Memory-class-es-sv

[Info,A:Type]. [init:Id  bag(Top)]. [f:Top]. [X:EClass(A)]. [es:EO+(Info)].
  (es-sv-class(es;Memory-class(f;init;X))) supposing (es-sv-class(es;X) and (l:Id. (bag-size(init l)  1)))


Proof not projected




Definitions occuring in Statement :  Memory-class: Memory-class(f;init;X) es-sv-class: es-sv-class(es;X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) Id: Id uimplies: b supposing a uall: [x:A]. B[x] top: Top le: A  B all: x:A. B[x] apply: f a function: x:A  B[x] natural_number: $n universe: Type bag-size: bag-size(bs) bag: bag(T)
Definitions :  so_lambda: x y.t[x; y] so_lambda: x.t[x] lt_int: i <z j bnot: b le_int: i z j bfalse: ff btrue: tt eq_int: (i = j) ifthenelse: if b then t else f fi  ycomb: Y lifting-gen-list-rev: lifting-gen-list-rev(n;bags) select: l[i] lifting-gen-rev: lifting-gen-rev(n;f;bags) lifting2: lifting2(f;abag;bbag) lifting-2: lifting-2(f) member: t  T Accum-class: Accum-class(f;init;X) Memory-class: Memory-class(f;init;X) top: Top so_apply: x[s1;s2] nat: uimplies: b supposing a so_apply: x[s] implies: P  Q uall: [x:A]. B[x] all: x:A. B[x] subtype: S  T eclass: EClass(A[eo; e])
Lemmas :  eclass_wf event-ordering+_wf le_wf Id_wf all_wf es-sv-class_wf event-ordering+_inc es-E_wf nat_wf primed-class-opt_wf bag-size_wf Accum-class-es-sv bag_wf single-bag_wf bag-combine_wf rec-combined-class-opt-1_wf top_wf primed-class-opt-es-sv

\mforall{}[Info,A:Type].  \mforall{}[init:Id  {}\mrightarrow{}  bag(Top)].  \mforall{}[f:Top].  \mforall{}[X:EClass(A)].  \mforall{}[es:EO+(Info)].
    (es-sv-class(es;Memory-class(f;init;X)))  supposing 
          (es-sv-class(es;X)  and 
          (\mforall{}l:Id.  (bag-size(init  l)  \mleq{}  1)))


Date html generated: 2012_02_20-PM-03_01_01
Last ObjectModification: 2012_02_07-PM-01_37_23

Home Index