{ [Info:Type]. [es:EO+(Info)]. [f:Top]. [X:EClass(Top)]. [e:E].
    (e  f[X] ~ if e  X then (bag-size(f X(e)) = 1) else False fi ) }

{ Proof }



Definitions occuring in Statement :  es-filter-image: f[X] eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E eq_int: (i = j) assert: b ifthenelse: if b then t else f fi  uall: [x:A]. B[x] top: Top false: False apply: f a natural_number: $n universe: Type sqequal: s ~ t bag-size: bag-size(bs)
Definitions :  limited-type: LimitedType prop: bfalse: ff btrue: tt decide: case b of inl(x) =s[x] | inr(y) =t[y] uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) eq_bool: p =b q lt_int: i <z j le_int: i z j eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') not: A eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b int: unit: Unit union: left + right implies: P  Q bool: false: False natural_number: $n eclass-val: X(e) apply: f a bag-size: bag-size(bs) eq_int: (i = j) es-filter-image: f[X] ifthenelse: if b then t else f fi  assert: b lambda: x.A[x] subtype: S  T function: x:A  B[x] all: x:A. B[x] equal: s = t universe: Type sqequal: s ~ t top: Top so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) event_ordering: EO es-E: E member: t  T event-ordering+: EO+(Info) uall: [x:A]. B[x] isect: x:A. B[x] in-eclass: e  X Auto: Error :Auto,  CollapseTHENA: Error :CollapseTHENA,  CollapseTHEN: Error :CollapseTHEN
Lemmas :  eclass_wf es-E_wf event-ordering+_inc top_wf event-ordering+_wf is-filter-image-sq eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf not_wf assert_wf in-eclass_wf bool_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[f:Top].  \mforall{}[X:EClass(Top)].  \mforall{}[e:E].
    (\muparrow{}e  \mmember{}\msubb{}  f[X]  \msim{}  if  e  \mmember{}\msubb{}  X  then  \muparrow{}(bag-size(f  X(e))  =\msubz{}  1)  else  False  fi  )


Date html generated: 2011_08_16-PM-04_11_06
Last ObjectModification: 2011_06_20-AM-00_43_15

Home Index