{ [Info:Type]. [es:EO+(Info)]. [f:Top]. [X:EClass(Top)]. [e:E].
    (e  f[X] ~ e  X  (bag-size(f X(e)) = 1)) }

{ Proof }



Definitions occuring in Statement :  es-filter-image: f[X] eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E eq_int: (i = j) band: p  q uall: [x:A]. B[x] top: Top apply: f a natural_number: $n universe: Type sqequal: s ~ t bag-size: bag-size(bs)
Definitions :  bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} false: False lt_int: i <z j le_int: i z j bfalse: ff set: {x:A| B[x]}  real: grp_car: |g| nat: limited-type: LimitedType btrue: tt prop: uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') not: A qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q bor: p q assert: b bnot: b int: unit: Unit union: left + right implies: P  Q bool: band: p  q empty-bag: {} bag-only: only(bs) natural_number: $n bag-size: bag-size(bs) eq_int: (i = j) subtype: S  T subtype_rel: A r B atom: Atom apply: f a es-base-E: es-base-E(es) token: "$token" ifthenelse: if b then t else f fi  record-select: r.x all: x:A. B[x] dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ void: Void equal: s = t eclass: EClass(A[eo; e]) es-filter-image: f[X] in-eclass: e  X eclass-val: X(e) eclass-compose1: f o X lambda: x.A[x] universe: Type sqequal: s ~ t bag: bag(T) top: Top es-E: E event_ordering: EO event-ordering+: EO+(Info) function: x:A  B[x] isect: x:A. B[x] member: t  T uall: [x:A]. B[x] MaAuto: Error :MaAuto,  CollapseTHENA: Error :CollapseTHENA,  CollapseTHEN: Error :CollapseTHEN
Lemmas :  event-ordering+_wf top_wf bag_wf event-ordering+_inc subtype_rel_self es-base-E_wf es-E_wf bool_wf uiff_transitivity eqtt_to_assert assert_of_eq_int assert_wf bag-size_wf nat_wf not_wf eqff_to_assert assert_of_bnot not_functionality_wrt_uiff bnot_wf eq_int_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[f:Top].  \mforall{}[X:EClass(Top)].  \mforall{}[e:E].
    (e  \mmember{}\msubb{}  f[X]  \msim{}  e  \mmember{}\msubb{}  X  \mwedge{}\msubb{}  (bag-size(f  X(e))  =\msubz{}  1))


Date html generated: 2011_08_16-PM-04_10_54
Last ObjectModification: 2011_06_20-AM-00_43_08

Home Index