Nuprl Lemma : better-feedback-dataflow_functionality

[A,C:Type]. [n:]. [B:n  Type]. [F:k:n  B[k]  C  C]. [ds1,ds2:k:n  dataflow(A;B[k])]. [buf:C].
[P:C  ].
  better-feedback-dataflow(n;ds1;F;buf;x.P[x])  better-feedback-dataflow(n;ds2;F;buf;x.P[x]) 
  supposing k:n. ds1 k  ds2 k


Proof not projected




Definitions occuring in Statement :  dataflow-equiv: d1  d2 better-feedback-dataflow: better-feedback-dataflow(n;ds;F;s;x.P[x]) dataflow: dataflow(A;B) bool: int_seg: {i..j} nat: uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] apply: f a function: x:A  B[x] natural_number: $n universe: Type
Definitions :  implies: P  Q and: P  Q iff: P  Q rev_implies: P  Q so_lambda: x.t[x] member: t  T dataflow-equiv: d1  d2 all: x:A. B[x] uimplies: b supposing a so_apply: x[s] uall: [x:A]. B[x] subtype: S  T top: Top ycomb: Y length: ||as|| prop: pi1: fst(t) pi2: snd(t) let: let true: True squash: T so_lambda: x y.t[x; y] nat: tl: tl(l) hd: hd(l) so_apply: x[s1;s2]
Lemmas :  better-feedback-data-stream nat_wf dataflow_wf bool_wf dataflow-equiv_wf int_seg_wf all_wf feedback-dataflow-equiv parallel-dataflow_functionality parallel-dataflow_wf data-stream-cons top_wf tl_wf length_wf ge_wf hd_wf equal_wf and_wf dataflow-ap_wf true_wf squash_wf ifthenelse_wf rec-dataflow_wf data-stream_wf

\mforall{}[A,C:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[B:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[F:k:\mBbbN{}n  {}\mrightarrow{}  B[k]  {}\mrightarrow{}  C  {}\mrightarrow{}  C].
\mforall{}[ds1,ds2:k:\mBbbN{}n  {}\mrightarrow{}  dataflow(A;B[k])].  \mforall{}[buf:C].  \mforall{}[P:C  {}\mrightarrow{}  \mBbbB{}].
    better-feedback-dataflow(n;ds1;F;buf;x.P[x])  \mequiv{}  better-feedback-dataflow(n;ds2;F;buf;x.P[x]) 
    supposing  \mforall{}k:\mBbbN{}n.  ds1  k  \mequiv{}  ds2  k


Date html generated: 2012_01_23-AM-11_58_04
Last ObjectModification: 2011_12_13-AM-10_34_49

Home Index