{ [Info,T,S:Type].  f:T  EClass(S). (Empty >zf[z] = Empty) }

{ Proof }



Definitions occuring in Statement :  bind-class: X >xY[x] es-empty-interface: Empty eclass: EClass(A[eo; e]) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A  B[x] universe: Type equal: s = t
Definitions :  quotient: x,y:A//B[x; y] guard: {T} implies: P  Q list: type List suptype: suptype(S; T) record-select: r.x assert: b set: {x:A| B[x]}  eq_atom: x =a y eq_atom: eq_atom$n(x;y) dep-isect: Error :dep-isect,  record+: record+ bag: bag(T) bool: subtype: S  T event_ordering: EO es-E: E event-ordering+: EO+(Info) so_lambda: x.t[x] pair: <a, b> fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B uall: [x:A]. B[x] isect: x:A. B[x] all: x:A. B[x] lambda: x.A[x] so_lambda: x y.t[x; y] axiom: Ax bind-class: X >xY[x] so_apply: x[s] apply: f a universe: Type equal: s = t function: x:A  B[x] Auto: Error :Auto,  Complete: Error :Complete,  Try: Error :Try,  CollapseTHEN: Error :CollapseTHEN,  MaAuto: Error :MaAuto,  es-empty-interface: Empty eclass: EClass(A[eo; e]) member: t  T AssertBY: Error :AssertBY,  CollapseTHENA: Error :CollapseTHENA,  eo-forward: eo.e bag-combine: xbs.f[x] empty-bag: {} prop: es-le-before: loc(e) es-le: e loc e'  sqequal: s ~ t top: Top void: Void ifthenelse: if b then t else f fi  token: "$token" es-base-E: es-base-E(es) atom: Atom tactic: Error :tactic
Lemmas :  subtype_rel_self es-base-E_wf empty-bag_wf bag-combine-empty-right bag-combine-empty-left es-le-before_wf2 bag_qinc es-le_wf bag_wf member_wf event-ordering+_wf es-E_wf event-ordering+_inc eclass_wf es-empty-interface_wf bind-class_wf subtype_rel_wf

\mforall{}[Info,T,S:Type].    \mforall{}f:T  {}\mrightarrow{}  EClass(S).  (Empty  >z>  f[z]  =  Empty)


Date html generated: 2011_08_16-AM-11_36_10
Last ObjectModification: 2011_06_20-AM-00_29_38

Home Index