{ collectfilterfun()  {s:    ( + Top)| 
                        (isl(snd(snd(s))))  (1  (fst(s)))}   ( + Top) }

{ Proof }



Definitions occuring in Statement :  collectfilterfun: collectfilterfun() isl: isl(x) assert: b bool: nat: top: Top pi1: fst(t) pi2: snd(t) le: A  B implies: P  Q member: t  T set: {x:A| B[x]}  function: x:A  B[x] product: x:A  B[x] union: left + right natural_number: $n int:
Definitions :  void: Void member: t  T isect: x:A. B[x] top: Top product: x:A  B[x] assert: b nat: bool: union: left + right function: x:A  B[x] all: x:A. B[x] subtype: S  T spreadn: spread3 eclass: EClass(A[eo; e]) equal: s = t subtype_rel: A r B fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) set: {x:A| B[x]}  implies: P  Q universe: Type prop: int: pi1: fst(t) natural_number: $n le: A  B lambda: x.A[x] so_lambda: x.t[x] pi2: snd(t) isl: isl(x) collectfilterfun: collectfilterfun() inr: inr x  pair: <a, b> false: False not: A inl: inl x  it: bfalse: ff es-E-interface: E(X) unit: Unit decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  subtract: n - m sum-map: f[x] for x  L sum: (f[x] | x < k) imax: imax(a;b) or: P  Q multiply: n * m guard: {T} minus: -n add: n + m less_than: a < b rationals: real: length: ||as|| l_member: (x  l) apply: f a so_apply: x[s] eq_knd: a = b fpf-dom: x  dom(f) in-eclass: e  X bnot: b btrue: tt limited-type: LimitedType and: P  Q iff: P  Q eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) eq_atom: x =a y null: null(as) set_blt: Error :set_blt,  infix_ap: x f y grp_blt: Error :grp_blt,  b-exists: (i<n.P[i])_b bl-exists: (xL.P[x])_b bl-all: (xL.P[x])_b dcdr-to-bool: [d] eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) q_le: q_le(r;s) q_less: q_less(a;b) qeq: qeq(r;s) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) deq-disjoint: deq-disjoint(eq;as;bs) deq-member: deq-member(eq;x;L) es-eq-E: e = e' eq_lnk: a = b eq_id: a = b eq_str: eq_str(x;y) bimplies: p  q band: p  q bor: p q sq_type: SQType(T) spread: spread def true: True
Lemmas :  ifthenelse_wf eqtt_to_assert iff_transitivity eqff_to_assert assert_of_bnot bnot_wf not_wf bfalse_wf subtype_rel_wf assert_wf isl_wf pi2_wf le_wf pi1_wf_top member_wf bool_wf top_wf nat_wf

collectfilterfun()  \mmember{}  \{s:\mBbbZ{}  \mtimes{}  \mBbbN{}  \mtimes{}  (\mBbbB{}  +  Top)|  (\muparrow{}isl(snd(snd(s))))  {}\mRightarrow{}  (1  \mleq{}  (fst(s)))\}    {}\mrightarrow{}  (\mBbbN{}  +  Top)


Date html generated: 2010_08_27-PM-02_54_26
Last ObjectModification: 2010_03_26-PM-01_28_40

Home Index