Nuprl Lemma : compose-fpf_wf

[A:Type]. [B:A  Type]. [f:x:A fp-B[x]]. [C:Type]. [a:A  (C?)]. [b:C  A].
  compose-fpf(a;b;f)  y:C fp-B[b y] supposing y:A. ((isl(a y))  ((b outl(a y)) = y))


Proof not projected




Definitions occuring in Statement :  compose-fpf: compose-fpf(a;b;f) fpf: a:A fp-B[a] outl: outl(x) isl: isl(x) assert: b uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies: P  Q unit: Unit member: t  T apply: f a function: x:A  B[x] union: left + right universe: Type equal: s = t
Definitions :  uall: [x:A]. B[x] fpf: a:A fp-B[a] so_apply: x[s] uimplies: b supposing a implies: P  Q member: t  T compose-fpf: compose-fpf(a;b;f) fpf-domain: fpf-domain(f) compose: f o g pi2: snd(t) so_lambda: x.t[x] squash: T true: True prop: pi1: fst(t) all: x:A. B[x] sq_stable: SqStable(P) exists: x:A. B[x] and: P  Q cand: A c B iff: P  Q guard: {T}
Lemmas :  mapfilter_wf fpf-domain_wf fpf-trivial-subtype-top isl_wf unit_wf2 outl_wf sq_stable__assert assert_wf member_map_filter l_member_wf all_wf equal_wf fpf_wf squash_wf true_wf

\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:x:A  fp->  B[x]].  \mforall{}[C:Type].  \mforall{}[a:A  {}\mrightarrow{}  (C?)].  \mforall{}[b:C  {}\mrightarrow{}  A].
    compose-fpf(a;b;f)  \mmember{}  y:C  fp->  B[b  y]  supposing  \mforall{}y:A.  ((\muparrow{}isl(a  y))  {}\mRightarrow{}  ((b  outl(a  y))  =  y))


Date html generated: 2012_01_23-AM-11_55_17
Last ObjectModification: 2011_12_28-PM-12_07_43

Home Index