{ [A,B:Type]. [f:A  bag(B)]. [b:bag(A)].  (concat-lifting1(f;b)  bag(B)) }

{ Proof }



Definitions occuring in Statement :  concat-lifting1: concat-lifting1(f;bag) uall: [x:A]. B[x] member: t  T function: x:A  B[x] universe: Type bag: bag(T)
Definitions :  equal: s = t member: t  T universe: Type function: x:A  B[x] bag: bag(T) concat-lifting1: concat-lifting1(f;bag) axiom: Ax isect: x:A. B[x] uall: [x:A]. B[x] all: x:A. B[x] int: nat: subtype: S  T rationals: real: set: {x:A| B[x]}  le: A  B not: A false: False implies: P  Q void: Void less_than: a < b prop: subtype_rel: A r B uiff: uiff(P;Q) and: P  Q product: x:A  B[x] uimplies: b supposing a ge: i  j  strong-subtype: strong-subtype(A;B) quotient: x,y:A//B[x; y] p-outcome: Outcome int_seg: {i..j} apply: f a funtype: funtype(n;A;T) primrec: primrec(n;b;c) fpf: a:A fp-B[a] eclass: EClass(A[eo; e]) ycomb: Y sqequal: s ~ t top: Top eq_int: (i = j) Auto: Error :Auto,  CollapseTHENA: Error :CollapseTHENA,  CollapseTHEN: Error :CollapseTHEN,  RepeatFor: Error :RepeatFor,  Unfold: Error :Unfold,  Complete: Error :Complete,  Try: Error :Try,  lambda: x.A[x] natural_number: $n tactic: Error :tactic
Lemmas :  ycomb-unroll subtype_rel_wf bag_wf funtype_wf member_wf int_seg_wf le_wf nat_wf false_wf not_wf concat-lifting_wf

\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  bag(B)].  \mforall{}[b:bag(A)].    (concat-lifting1(f;b)  \mmember{}  bag(B))


Date html generated: 2011_08_17-PM-06_09_31
Last ObjectModification: 2011_06_20-PM-09_04_20

Home Index