{ [B:Type]. [n:]. [A:n  Type]. [bags:k:n  bag(A k)].
  [f:funtype(n;A;bag(B))].
    (concat-lifting(n;f;bags)  bag(B)) }

{ Proof }



Definitions occuring in Statement :  concat-lifting: concat-lifting(n;f;bags) int_seg: {i..j} nat: uall: [x:A]. B[x] member: t  T apply: f a function: x:A  B[x] natural_number: $n universe: Type bag: bag(T) funtype: funtype(n;A;T)
Definitions :  Unfold: Error :Unfold,  sqequal: s ~ t subtract: n - m equal: s = t function: x:A  B[x] int_seg: {i..j} universe: Type lambda: x.A[x] apply: f a add: n + m natural_number: $n Try: Error :Try,  Complete: Error :Complete,  CollapseTHENA: Error :CollapseTHENA,  CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  member: t  T isect: x:A. B[x] funtype: funtype(n;A;T) bag: bag(T) uall: [x:A]. B[x] nat: concat-lifting: concat-lifting(n;f;bags) axiom: Ax all: x:A. B[x] int: subtype: S  T grp_car: |g| real: set: {x:A| B[x]}  concat-lifting-list: concat-lifting-list(n;bags) le: A  B not: A false: False implies: P  Q subtype_rel: A r B uiff: uiff(P;Q) and: P  Q product: x:A  B[x] uimplies: b supposing a less_than: a < b ge: i  j  strong-subtype: strong-subtype(A;B) primrec: primrec(n;b;c) ycomb: Y fpf: a:A fp-B[a] eclass: EClass(A[eo; e]) lifting-gen-list-rev: Error :lifting-gen-list-rev,  rationals: lelt: i  j < k prop: void: Void p-outcome: Outcome sq_type: SQType(T) guard: {T} iff: P  Q rev_implies: P  Q squash: T true: True
Lemmas :  squash_wf true_wf rev_implies_wf iff_wf int_subtype_base subtype_base_sq subtype_rel_wf funtype_wf bag-union_wf bag_wf temp-lifting-gen-list-rev_wf nat_wf le_wf not_wf false_wf member_wf int_seg_wf

\mforall{}[B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[bags:k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k)].  \mforall{}[f:funtype(n;A;bag(B))].
    (concat-lifting(n;f;bags)  \mmember{}  bag(B))


Date html generated: 2011_08_17-PM-06_08_40
Last ObjectModification: 2011_06_01-PM-06_50_45

Home Index