{ [Info,A:Type]. [F:Id  dataflow(Info;bag(A))]. [es:EO+(Info)]. [e:E].
    dataflow-set-class(x.F[x])(e) = only(dataflow-history-val(es;e;x.F[x])) 
    supposing e  dataflow-set-class(x.F[x]) }

{ Proof }



Definitions occuring in Statement :  dataflow-set-class: dataflow-set-class(x.P[x]) dataflow-history-val: dataflow-history-val(es;e;x.P[x]) eclass-val: X(e) in-eclass: e  X event-ordering+: EO+(Info) es-E: E dataflow: dataflow(A;B) Id: Id assert: b uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A  B[x] universe: Type equal: s = t bag-only: only(bs) bag: bag(T)
Definitions :  sqequal: s ~ t void: Void isect2: T1  T2 b-union: A  B list: type List fpf-sub: f  g deq: EqDecider(T) ma-state: State(ds) atom: Atom es-base-E: es-base-E(es) token: "$token" false: False true: True squash: T class-program: ClassProgram(T) fpf-cap: f(x)?z bool: intensional-universe: IType es-E-interface: E(X) cond-class: [X?Y] implies: P  Q union: left + right or: P  Q guard: {T} eq_knd: a = b l_member: (x  l) fpf-dom: x  dom(f) subtype: S  T atom: Atom$n corec: corec(T.F[T]) lambda: x.A[x] top: Top in-eclass: e  X eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] so_lambda: x.t[x] pair: <a, b> fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) record-select: r.x eq_atom: x =a y eq_atom: eq_atom$n(x;y) set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B all: x:A. B[x] axiom: Ax dataflow-history-val: dataflow-history-val(es;e;x.P[x]) bag-only: only(bs) apply: f a so_apply: x[s] dataflow-set-class: dataflow-set-class(x.P[x]) eclass-val: X(e) prop: assert: b equal: s = t universe: Type dataflow: dataflow(A;B) bag: bag(T) Id: Id function: x:A  B[x] uall: [x:A]. B[x] event-ordering+: EO+(Info) event_ordering: EO es-E: E member: t  T isect: x:A. B[x] uimplies: b supposing a Auto: Error :Auto,  CollapseTHENA: Error :CollapseTHENA,  MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic,  real: grp_car: |g| nat: natural_number: $n null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bnot: b bimplies: p  q band: p  q eq_int: (i = j) bor: p q bag-size: bag-size(bs) int: RepUR: Error :RepUR
Lemmas :  assert_of_eq_int bag-size_wf nat_wf top_wf Id_wf dataflow-set-class_wf in-eclass_wf assert_wf bag-only_wf dataflow-history-val_wf bag_wf eclass-val_wf es-E_wf event-ordering+_wf dataflow_wf member_wf subtype_rel_wf event-ordering+_inc uall_wf intensional-universe_wf true_wf squash_wf es-base-E_wf subtype_rel_self dataflow_subtype subtype_rel_bag in-dataflow-set-class

\mforall{}[Info,A:Type].  \mforall{}[F:Id  {}\mrightarrow{}  dataflow(Info;bag(A))].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
    dataflow-set-class(x.F[x])(e)  =  only(dataflow-history-val(es;e;x.F[x])) 
    supposing  \muparrow{}e  \mmember{}\msubb{}  dataflow-set-class(x.F[x])


Date html generated: 2011_08_16-PM-06_13_00
Last ObjectModification: 2011_06_20-AM-01_50_37

Home Index