{ [M:Type  Type]
    t:. x:Id. m:pMsg(P.M[P]). G1,G2:LabeledDAG(pInTransit(P.M[P])).
    Cs1,Cs2:component(P.M[P]) List.
      ((k:||Cs1||. let x,P = Cs1[k] in let z,Q = Cs2[k] in (x = z)  PQ)
          (system-equiv(P.M[P];deliver-msg(t;m;x;Cs1;G1);
                                 deliver-msg(t;m;x;Cs2;G2))
             (deliver-msg(t;m;x;Cs1;G1)
              = deliver-msg(t;m;x;Cs2;G2)))) supposing 
         ((||Cs1|| = ||Cs2||) and 
         (G1 = G2)) 
    supposing Continuous+(P.M[P]) }

{ Proof }



Definitions occuring in Statement :  deliver-msg: deliver-msg(t;m;x;Cs;L) system-equiv: system-equiv(T.M[T];S1;S2) pInTransit: pInTransit(P.M[P]) component: component(P.M[P]) process-equiv: process-equiv pMsg: pMsg(P.M[P]) ldag: LabeledDAG(T) Id: Id strong-type-continuous: Continuous+(T.F[T]) select: l[i] length: ||as|| int_seg: {i..j} nat: uimplies: b supposing a uall: [x:A]. B[x] top: Top so_apply: x[s] all: x:A. B[x] implies: P  Q and: P  Q function: x:A  B[x] spread: spread def product: x:A  B[x] list: type List natural_number: $n int: universe: Type equal: s = t
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a strong-type-continuous: Continuous+(T.F[T]) so_apply: x[s] all: x:A. B[x] Id: Id component: component(P.M[P]) length: ||as|| implies: P  Q and: P  Q system-equiv: system-equiv(T.M[T];S1;S2) deliver-msg: deliver-msg(t;m;x;Cs;L) top: Top member: t  T ext-eq: A  B list_accum: list_accum(x,a.f[x; a];y;l) deliver-msg-to-comp: deliver-msg-to-comp(t;m;x;S;C) ycomb: Y le: A  B not: A false: False System: System(P.M[P]) so_lambda: x.t[x] prop: subtype: S  T iff: P  Q rev_implies: P  Q squash: T true: True ifthenelse: if b then t else f fi  bfalse: ff btrue: tt cand: A c B pi2: snd(t) int_seg: {i..j} select: l[i] process-equiv: process-equiv lelt: i  j < k le_int: i z j bnot: b lt_int: i <z j pi1: fst(t) nat: sq_type: SQType(T) guard: {T} bool: unit: Unit Process-stream: Process-stream(P;msgs) dataflow-ap: df(a) hd: hd(l) tl: tl(l) decidable: Dec(P) or: P  Q it: Process-apply: Process-apply(P;m)
Lemmas :  nat_wf int_seg_wf component_wf System_wf system-equiv_wf top_wf non_neg_length length_wf_nat length_wf1 select_wf Process_wf select_cons_tl process-equiv_wf squash_wf le_wf deliver-msg-to-comp_wf subtype_base_sq Id_wf atom2_subtype_base eq_id_wf bool_wf iff_weakening_uiff uiff_transitivity assert_wf eqtt_to_assert assert-eq-id not_wf bnot_wf eqff_to_assert assert_of_bnot not_functionality_wrt_uiff ldag_wf pInTransit_wf length_cons pMsg_wf strong-type-continuous_wf data-stream-cons Process-apply_wf pExt_wf hd_wf ge_wf tl_wf add-cause_wf lg-append_wf_dag true_wf decidable__equal_int int_subtype_base Process-stream_wf pi1_wf_top equal-top pi2_wf

\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}t:\mBbbN{}.  \mforall{}x:Id.  \mforall{}m:pMsg(P.M[P]).  \mforall{}G1,G2:LabeledDAG(pInTransit(P.M[P])).
    \mforall{}Cs1,Cs2:component(P.M[P])  List.
        ((\mforall{}k:\mBbbN{}||Cs1||.  let  x,P  =  Cs1[k]  in  let  z,Q  =  Cs2[k]  in  (x  =  z)  \mwedge{}  P\mequiv{}Q)
              {}\mRightarrow{}  (system-equiv(P.M[P];deliver-msg(t;m;x;Cs1;G1);deliver-msg(t;m;x;Cs2;G2))
                    \mwedge{}  (deliver-msg(t;m;x;Cs1;G1)  =  deliver-msg(t;m;x;Cs2;G2))))  supposing 
              ((||Cs1||  =  ||Cs2||)  and 
              (G1  =  G2)) 
    supposing  Continuous+(P.M[P])


Date html generated: 2011_08_16-PM-06_53_12
Last ObjectModification: 2011_06_18-AM-11_07_41

Home Index