{ [Info:Type]. [es:EO+(Info)]. [X,Y:EClass(Top)].
    {[e:E(X)]. (e  Y)} supposing E(X) r E(Y) }

{ Proof }



Definitions occuring in Statement :  es-E-interface: E(X) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) subtype_rel: A r B assert: b uimplies: b supposing a uall: [x:A]. B[x] top: Top guard: {T} universe: Type
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a guard: {T} member: t  T so_lambda: x y.t[x; y] assert: b all: x:A. B[x] implies: P  Q btrue: tt ifthenelse: if b then t else f fi  true: True es-E-interface: E(X) so_apply: x[s1;s2] sq_type: SQType(T) subtype: S  T
Lemmas :  assert_witness in-eclass_wf es-E-interface_wf eclass_wf top_wf es-E_wf event-ordering+_wf event-ordering+_inc subtype_base_sq bool_wf bool_subtype_base assert_elim

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X,Y:EClass(Top)].    \{\mforall{}[e:E(X)].  (\muparrow{}e  \mmember{}\msubb{}  Y)\}  supposing  E(X)  \msubseteq{}r  E(Y)


Date html generated: 2011_08_16-PM-04_01_04
Last ObjectModification: 2011_06_20-AM-00_36_02

Home Index