{ [es:EO]. [e,e':es-base-E(es)].  (es-bcausl(es;e;e')  ) }

{ Proof }



Definitions occuring in Statement :  es-bcausl: es-bcausl(es;e;e') es-base-E: es-base-E(es) event_ordering: EO bool: uall: [x:A]. B[x] member: t  T
Definitions :  bfalse: ff btrue: tt decide: case b of inl(x) =s[x] | inr(y) =t[y] set: {x:A| B[x]}  real: grp_car: |g| subtype: S  T int: limited-type: LimitedType strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  and: P  Q uiff: uiff(P;Q) intensional-universe: IType fpf: a:A fp-B[a] subtype_rel: A r B eq_atom: eq_atom$n(x;y) less_than: a < b nat: not: A l_member: (x  l) implies: P  Q list: type List product: x:A  B[x] exists: x:A. B[x] infix_ap: x f y union: left + right or: P  Q Id: Id uimplies: b supposing a atom: Atom apply: f a top: Top token: "$token" eq_atom: x =a y ifthenelse: if b then t else f fi  record-select: r.x record: record(x.T[x]) dep-isect: Error :dep-isect,  record+: record+ function: x:A  B[x] all: x:A. B[x] axiom: Ax es-bcausl: es-bcausl(es;e;e') so_lambda: x.t[x] bool: prop: universe: Type event_ordering: EO equal: s = t es-base-E: es-base-E(es) member: t  T uall: [x:A]. B[x] isect: x:A. B[x] MaAuto: Error :MaAuto,  CollapseTHENA: Error :CollapseTHENA,  CollapseTHEN: Error :CollapseTHEN,  Unfold: Error :Unfold,  Auto: Error :Auto,  D: Error :D,  RepeatFor: Error :RepeatFor,  tactic: Error :tactic
Lemmas :  intensional-universe_wf member_wf subtype_rel_wf bool_wf subtype_rel_self Id_wf l_member_wf not_wf nat_wf es-base-E_wf uall_wf event_ordering_wf top_wf record-select_wf btrue_wf bfalse_wf

\mforall{}[es:EO].  \mforall{}[e,e':es-base-E(es)].    (es-bcausl(es;e;e')  \mmember{}  \mBbbB{})


Date html generated: 2011_08_16-AM-10_22_59
Last ObjectModification: 2011_06_18-AM-09_08_58

Home Index