{ es:EO. e,e':E.  (e = e')  (e < e')  (e' < e) supposing loc(e) = loc(e') }

{ Proof }



Definitions occuring in Statement :  es-causl: (e < e') es-loc: loc(e) es-E: E event_ordering: EO Id: Id uimplies: b supposing a all: x:A. B[x] or: P  Q equal: s = t
Definitions :  btrue: tt sq_type: SQType(T) true: True false: False decide: case b of inl(x) =s[x] | inr(y) =t[y] assert: b guard: {T} axiom: Ax set: {x:A| B[x]}  real: grp_car: |g| subtype: S  T int: limited-type: LimitedType strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  and: P  Q uiff: uiff(P;Q) intensional-universe: IType fpf: a:A fp-B[a] subtype_rel: A r B uall: [x:A]. B[x] eq_atom: eq_atom$n(x;y) bool: prop: less_than: a < b nat: not: A l_member: (x  l) implies: P  Q list: type List product: x:A  B[x] exists: x:A. B[x] infix_ap: x f y atom: Atom apply: f a top: Top universe: Type eq_atom: x =a y ifthenelse: if b then t else f fi  record: record(x.T[x]) dep-isect: Error :dep-isect,  record+: record+ member: t  T isect: x:A. B[x] union: left + right es-E: E function: x:A  B[x] event_ordering: EO Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  MaAuto: Error :MaAuto,  ParallelOp: Error :ParallelOp,  CollapseTHENA: Error :CollapseTHENA,  RepeatFor: Error :RepeatFor,  token: "$token" record-select: r.x es-causl: (e < e') or: P  Q equal: s = t es-loc: loc(e) Id: Id uimplies: b supposing a all: x:A. B[x] AssertBY: Error :AssertBY,  D: Error :D
Lemmas :  es-E_wf Id_wf es-causl_wf l_member_wf not_wf nat_wf subtype_rel_wf member_wf intensional-universe_wf bool_wf subtype_rel_self event_ordering_wf es-loc_wf assert_wf false_wf ifthenelse_wf true_wf subtype_base_sq bool_subtype_base assert_elim

\mforall{}es:EO.  \mforall{}e,e':E.    (e  =  e')  \mvee{}  (e  <  e')  \mvee{}  (e'  <  e)  supposing  loc(e)  =  loc(e')


Date html generated: 2011_08_16-AM-10_24_56
Last ObjectModification: 2011_06_18-AM-09_09_20

Home Index