{ [Info,A:Type]. [X:EClass(A)]. [size:]. [num:A  ]. [P:A  ].
    (Collect(size v's from X with maximum num[v] such that P[v])  EClass()) }

{ Proof }



Definitions occuring in Statement :  es-collect-filter: Collect(size v's from X with maximum num[v] such that P[v]) eclass: EClass(A[eo; e]) bool: nat_plus: nat: uall: [x:A]. B[x] so_apply: x[s] member: t  T function: x:A  B[x] universe: Type
Definitions :  void: Void empty-bag: {} single-bag: {x} band: p  q add: n + m pi2: snd(t) bnot: b int_nzero: real: pi1: fst(t) eq_int: (i = j) bor: p q fpf: a:A fp-B[a] uimplies: b supposing a union: left + right less_than: a < b permutation: permutation(T;L1;L2) list: type List quotient: x,y:A//B[x; y] spreadn: spread3 int: product: x:A  B[x] so_lambda: x.t[x] btrue: tt natural_number: $n pair: <a, b> spread: spread def es-collect-accum: es-collect-accum(X;x.num[x];init;a,v.f[a; v];a.P[a]) es-filter-image: f[X] subtype: S  T subtype_rel: A r B eq_atom: eq_atom$n(x;y) atom: Atom top: Top es-base-E: es-base-E(es) token: "$token" eq_atom: x =a y ifthenelse: if b then t else f fi  record-select: r.x dep-isect: Error :dep-isect,  record+: record+ event_ordering: EO es-E: E event-ordering+: EO+(Info) lambda: x.A[x] all: x:A. B[x] bag: bag(T) set: {x:A| B[x]}  axiom: Ax apply: f a so_apply: x[s] es-collect-filter: Collect(size v's from X with maximum num[v] such that P[v]) bool: equal: s = t universe: Type so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) nat_plus: nat: uall: [x:A]. B[x] isect: x:A. B[x] member: t  T function: x:A  B[x]
Lemmas :  bool_wf nat_wf es-collect-accum_wf btrue_wf member_wf bag_wf permutation_wf es-filter-image_wf event-ordering+_wf event-ordering+_inc subtype_rel_self es-base-E_wf es-E_wf eclass_wf nat_plus_wf bor_wf eq_int_wf pi1_wf_top top_wf bnot_wf pi2_wf band_wf ifthenelse_wf single-bag_wf empty-bag_wf

\mforall{}[Info,A:Type].  \mforall{}[X:EClass(A)].  \mforall{}[size:\mBbbN{}\msupplus{}].  \mforall{}[num:A  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].
    (Collect(size  v's  from  X  with  maximum  num[v]  such  that  P[v])  \mmember{}  EClass(\mBbbN{}))


Date html generated: 2011_08_16-PM-05_28_42
Last ObjectModification: 2011_06_20-AM-01_24_23

Home Index