{ [Info:Type]. [es:EO+(Info)]. [f:Top]. [X:EClass(Top)]. [e:E].
    f[X](e) ~ only(f X(e)) supposing e  X }

{ Proof }



Definitions occuring in Statement :  es-filter-image: f[X] eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uimplies: b supposing a uall: [x:A]. B[x] top: Top apply: f a universe: Type sqequal: s ~ t bag-only: only(bs)
Definitions :  true: True false: False lt_int: i <z j le_int: i z j bfalse: ff subtype_rel: A r B bag: bag(T) set: {x:A| B[x]}  real: grp_car: |g| nat: limited-type: LimitedType btrue: tt product: x:A  B[x] and: P  Q uiff: uiff(P;Q) eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') not: A eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q natural_number: $n apply: f a bag-size: bag-size(bs) eq_int: (i = j) bnot: b int: unit: Unit union: left + right implies: P  Q bool: eclass-compose1: f o X eclass-val: X(e) es-filter-image: f[X] lambda: x.A[x] subtype: S  T function: x:A  B[x] all: x:A. B[x] in-eclass: e  X equal: s = t prop: member: t  T so_lambda: x.t[x] uimplies: b supposing a sqequal: s ~ t assert: b es-E: E event_ordering: EO eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] top: Top event-ordering+: EO+(Info) universe: Type uall: [x:A]. B[x] isect: x:A. B[x] CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  CollapseTHENA: Error :CollapseTHENA,  RepeatFor: Error :RepeatFor
Lemmas :  event-ordering+_inc es-E_wf event-ordering+_wf eclass_wf assert_wf uall_wf top_wf in-eclass_wf bool_wf uiff_transitivity eqtt_to_assert assert_of_eq_int bag-size_wf nat_wf bag_wf member_wf not_wf eqff_to_assert assert_of_bnot not_functionality_wrt_uiff bnot_wf eq_int_wf true_wf false_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[f:Top].  \mforall{}[X:EClass(Top)].  \mforall{}[e:E].
    f[X](e)  \msim{}  only(f  X(e))  supposing  \muparrow{}e  \mmember{}\msubb{}  X


Date html generated: 2011_08_16-PM-04_11_40
Last ObjectModification: 2011_06_20-AM-00_43_35

Home Index