Nuprl Lemma : es-interface-accum-val
[Info:Type]. 
[es:EO+(Info)]. 
[X:EClass(Top)]. 
[b,f:Top]. 
[e:E].
  es-interface-accum(f;b;X)(e) ~ list_accum(b,e.f b X(e);b;
(X)(e)) supposing 
e 
 es-interface-accum(f;b;X)
Proof not projected
Definitions occuring in Statement : 
es-interface-accum: es-interface-accum(f;x;X), 
es-interface-predecessors:
(X)(e), 
eclass-val: X(e), 
in-eclass: e 
 X, 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-E: E, 
assert:
b, 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
top: Top, 
apply: f a, 
universe: Type, 
sqequal: s ~ t, 
list_accum: list_accum(x,a.f[x; a];y;l)
Definitions : 
uall:
[x:A]. B[x], 
eclass: EClass(A[eo; e]), 
top: Top, 
uimplies: b supposing a, 
assert:
b, 
in-eclass: e 
 X, 
es-interface-accum: es-interface-accum(f;x;X), 
eclass-val: X(e), 
eq_int: (i =
 j), 
ifthenelse: if b then t else f fi , 
member: t 
 T, 
implies: P 
 Q, 
all:
x:A. B[x], 
btrue: tt, 
bfalse: ff, 
guard: {T}, 
so_lambda: 
x y.t[x; y], 
bool:
, 
unit: Unit, 
uiff: uiff(P;Q), 
and: P 
 Q, 
false: False, 
nat:
, 
so_apply: x[s1;s2], 
es-E-interface: E(X), 
it:
, 
prop:
, 
subtype: S 
 T
Lemmas : 
bool_wf, 
uiff_transitivity, 
equal_wf, 
assert_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
true_wf, 
bnot_wf, 
not_wf, 
eqff_to_assert, 
assert_of_bnot, 
not_functionality_wrt_uiff, 
false_wf, 
eq_int_wf, 
bag-size_wf, 
top_wf, 
ifthenelse_wf, 
nat_wf, 
bag_wf, 
single-bag_wf, 
list_accum_wf, 
es-E-interface_wf, 
Id_wf, 
es-loc_wf, 
event-ordering+_inc, 
es-interface-predecessors_wf, 
empty-bag_wf, 
es-E_wf, 
event-ordering+_wf
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[b,f:Top].  \mforall{}[e:E].
    es-interface-accum(f;b;X)(e)  \msim{}  list\_accum(b,e.f  b  X(e);b;\mleq{}(X)(e)) 
    supposing  \muparrow{}e  \mmember{}\msubb{}  es-interface-accum(f;b;X)
Date html generated:
2012_01_23-PM-12_26_12
Last ObjectModification:
2011_12_19-PM-04_38_20
Home
Index