Nuprl Lemma : es-interface-accum-val

[Info:Type]. [es:EO+(Info)]. [X:EClass(Top)]. [b,f:Top]. [e:E].
  es-interface-accum(f;b;X)(e) ~ list_accum(b,e.f b X(e);b;(X)(e)) supposing e  es-interface-accum(f;b;X)


Proof not projected




Definitions occuring in Statement :  es-interface-accum: es-interface-accum(f;x;X) es-interface-predecessors: (X)(e) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uimplies: b supposing a uall: [x:A]. B[x] top: Top apply: f a universe: Type sqequal: s ~ t list_accum: list_accum(x,a.f[x; a];y;l)
Definitions :  uall: [x:A]. B[x] eclass: EClass(A[eo; e]) top: Top uimplies: b supposing a assert: b in-eclass: e  X es-interface-accum: es-interface-accum(f;x;X) eclass-val: X(e) eq_int: (i = j) ifthenelse: if b then t else f fi  member: t  T implies: P  Q all: x:A. B[x] btrue: tt bfalse: ff guard: {T} so_lambda: x y.t[x; y] bool: unit: Unit uiff: uiff(P;Q) and: P  Q false: False nat: so_apply: x[s1;s2] es-E-interface: E(X) it: prop: subtype: S  T
Lemmas :  bool_wf uiff_transitivity equal_wf assert_wf eqtt_to_assert assert_of_eq_int true_wf bnot_wf not_wf eqff_to_assert assert_of_bnot not_functionality_wrt_uiff false_wf eq_int_wf bag-size_wf top_wf ifthenelse_wf nat_wf bag_wf single-bag_wf list_accum_wf es-E-interface_wf Id_wf es-loc_wf event-ordering+_inc es-interface-predecessors_wf empty-bag_wf es-E_wf event-ordering+_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[b,f:Top].  \mforall{}[e:E].
    es-interface-accum(f;b;X)(e)  \msim{}  list\_accum(b,e.f  b  X(e);b;\mleq{}(X)(e)) 
    supposing  \muparrow{}e  \mmember{}\msubb{}  es-interface-accum(f;b;X)


Date html generated: 2012_01_23-PM-12_26_12
Last ObjectModification: 2011_12_19-PM-04_38_20

Home Index