{ [Info:Type]. [es:EO+(Info)]. [A:Type]. [X,Y:EClass(A)]. [e:E].
    e  [X?Y] = e  X e  Y }

{ Proof }



Definitions occuring in Statement :  cond-class: [X?Y] in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E bor: p q bool: uall: [x:A]. B[x] universe: Type equal: s = t
Definitions :  false: False lt_int: i <z j le_int: i z j bfalse: ff bag: bag(T) real: grp_car: |g| nat: limited-type: LimitedType btrue: tt prop: null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q natural_number: $n apply: f a bag-size: bag-size(bs) eq_int: (i = j) bnot: b int: unit: Unit union: left + right implies: P  Q eclass-compose2: eclass-compose2(f;X;Y) lambda: x.A[x] subtype: S  T pair: <a, b> fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) record-select: r.x assert: b eq_atom: x =a y eq_atom: eq_atom$n(x;y) set: {x:A| B[x]}  dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B function: x:A  B[x] all: x:A. B[x] axiom: Ax bor: p q cond-class: [X?Y] in-eclass: e  X bool: equal: s = t universe: Type so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) uall: [x:A]. B[x] isect: x:A. B[x] member: t  T es-E: E event-ordering+: EO+(Info) event_ordering: EO RepUR: Error :RepUR,  CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto
Lemmas :  not_wf bnot_wf assert_wf bool_wf assert_of_eq_int not_functionality_wrt_uiff assert_of_bnot uiff_transitivity eqff_to_assert nat_wf bag-size_wf event-ordering+_wf es-E_wf bag_wf member_wf eqtt_to_assert event-ordering+_inc eclass_wf bor_wf in-eclass_wf eq_int_wf eq_int_eq_true

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[A:Type].  \mforall{}[X,Y:EClass(A)].  \mforall{}[e:E].    e  \mmember{}\msubb{}  [X?Y]  =  e  \mmember{}\msubb{}  X  \mvee{}\msubb{}e  \mmember{}\msubb{}  Y


Date html generated: 2011_08_16-AM-11_42_33
Last ObjectModification: 2011_06_20-AM-00_33_09

Home Index