{ [Info:Type]. [es:EO+(Info)]. [X:EClass(Top)]. [e:E].
    #X(e) ~ ||(X)(e)|| supposing e  X }

{ Proof }



Definitions occuring in Statement :  es-interface-count: #X es-interface-predecessors: (X)(e) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E length: ||as|| assert: b uimplies: b supposing a uall: [x:A]. B[x] top: Top universe: Type sqequal: s ~ t
Definitions :  true: True bag_only_single: bag_only_single{bag_only_single_compseq_tag_def:o}(x) false: False lt_int: i <z j le_int: i z j bfalse: ff set: {x:A| B[x]}  real: grp_car: |g| nat: limited-type: LimitedType btrue: tt product: x:A  B[x] and: P  Q uiff: uiff(P;Q) eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') not: A eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q natural_number: $n apply: f a bag-size: bag-size(bs) eq_int: (i = j) bnot: b int: unit: Unit union: left + right implies: P  Q bool: eclass-val: X(e) es-interface-count: #X top: Top lambda: x.A[x] subtype: S  T function: x:A  B[x] all: x:A. B[x] in-eclass: e  X equal: s = t prop: so_lambda: x.t[x] assert: b es-E: E event_ordering: EO eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] event-ordering+: EO+(Info) universe: Type uimplies: b supposing a sqequal: s ~ t uall: [x:A]. B[x] isect: x:A. B[x] member: t  T RepUR: Error :RepUR,  CollapseTHEN: Error :CollapseTHEN,  Unfold: Error :Unfold,  Auto: Error :Auto,  D: Error :D,  CollapseTHENA: Error :CollapseTHENA,  RepeatFor: Error :RepeatFor
Lemmas :  bool_wf not_wf nat_wf top_wf bag-size_wf assert_wf assert_of_eq_int eqtt_to_assert uiff_transitivity event-ordering+_inc es-E_wf uall_wf event-ordering+_wf eclass_wf in-eclass_wf eqff_to_assert assert_of_bnot not_functionality_wrt_uiff bnot_wf eq_int_wf true_wf false_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[e:E].    \#X(e)  \msim{}  ||\mleq{}(X)(e)||  supposing  \muparrow{}e  \mmember{}\msubb{}  X


Date html generated: 2011_08_16-PM-04_35_04
Last ObjectModification: 2011_06_20-AM-00_58_17

Home Index