{ [Info:Type]. [es:EO+(Info)]. [A:Type]. [f:Top]. [Ia:EClass(A)]. [e:E].
    f'Ia(e) ~ f Ia(e) supposing e  Ia }

{ Proof }



Definitions occuring in Statement :  es-interface-image: f'Ia eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uimplies: b supposing a uall: [x:A]. B[x] top: Top apply: f a universe: Type sqequal: s ~ t
Definitions :  lambda: x.A[x] subtype: S  T fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) record-select: r.x eq_atom: x =a y eq_atom: eq_atom$n(x;y) set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B function: x:A  B[x] all: x:A. B[x] in-eclass: e  X equal: s = t prop: member: t  T uall: [x:A]. B[x] so_lambda: x.t[x] uimplies: b supposing a isect: x:A. B[x] sqequal: s ~ t assert: b es-E: E event_ordering: EO eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] top: Top universe: Type event-ordering+: EO+(Info) eclass-compose1: f o X eclass-val: X(e) es-interface-image: f'Ia bag: bag(T) implies: P  Q apply: f a real: grp_car: |g| int: nat: bag-size: bag-size(bs) natural_number: $n eq_int: (i = j) Auto: Error :Auto,  D: Error :D,  CollapseTHENA: Error :CollapseTHENA,  tactic: Error :tactic,  null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bnot: b bimplies: p  q band: p  q bor: p q l_member: (x  l) rev_implies: P  Q union: left + right or: P  Q iff: P  Q es-causle: e c e' length: ||as|| false: False map: map(f;as) es-E-interface: E(X) permutation: permutation(T;L1;L2) void: Void quotient: x,y:A//B[x; y] pair: <a, b> bool: bag-map: bag-map(f;bs) bag-only: only(bs) list: type List MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN
Lemmas :  only-bag-map permutation_wf bag-subtype-list not_wf false_wf assert_of_eq_int le_wf eq_int_wf bag-size_wf nat_wf bag_wf es-E_wf eclass_wf top_wf uall_wf assert_wf event-ordering+_wf event-ordering+_inc es-interface-top subtype_rel_wf member_wf in-eclass_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[A:Type].  \mforall{}[f:Top].  \mforall{}[Ia:EClass(A)].  \mforall{}[e:E].
    f'Ia(e)  \msim{}  f  Ia(e)  supposing  \muparrow{}e  \mmember{}\msubb{}  Ia


Date html generated: 2011_08_16-PM-04_09_34
Last ObjectModification: 2011_06_20-AM-00_42_49

Home Index