{ [Info,A:Type]. [X:EClass(A)]. [Y:EClass(Top)].
    es-interface-or-left((X | Y)) = X supposing Singlevalued(X) }

{ Proof }



Definitions occuring in Statement :  es-interface-or-left: es-interface-or-left(X) es-interface-or: (X | Y) sv-class: Singlevalued(X) eclass: EClass(A[eo; e]) uimplies: b supposing a uall: [x:A]. B[x] top: Top universe: Type equal: s = t
Definitions :  nil: [] one_or_both_ind_oobright: Error :one_or_both_ind_oobright_compseq_tag_def,  one_or_both_ind_oobleft: Error :one_or_both_ind_oobleft_compseq_tag_def,  one_or_both_ind_oobboth: Error :one_or_both_ind_oobboth_compseq_tag_def,  oobboth-bval: Error :oobboth-bval,  oobleft-lval: Error :oobleft-lval,  oobboth?: Error :oobboth?,  oobleft?: Error :oobleft?,  oob-getleft: oob-getleft(x) oob-hasleft: oob-hasleft(x) sqequal: s ~ t bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} bag_only_single: bag_only_single{bag_only_single_compseq_tag_def:o}(x) bag_size_single: bag_size_single{bag_size_single_compseq_tag_def:o}(x) oobright: Error :oobright,  one_or_both: Error :one_or_both,  empty-bag: {} oob-getleft?: oob-getleft?(x) oobleft: Error :oobleft,  bag-only: only(bs) oobboth: Error :oobboth,  single-bag: {x} lt_int: i <z j le_int: i z j bfalse: ff real: grp_car: |g| nat: limited-type: LimitedType btrue: tt null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q natural_number: $n bag-size: bag-size(bs) eq_int: (i = j) bnot: b int: unit: Unit union: left + right implies: P  Q bool: eclass-compose1: f o X oob-apply: oob-apply(xs;ys) eclass-compose2: eclass-compose2(f;X;Y) es-filter-image: f[X] record-select: r.x set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b apply: f a eq_atom: x =a y eq_atom: eq_atom$n(x;y) dep-isect: Error :dep-isect,  record+: record+ bag: bag(T) subtype: S  T event_ordering: EO es-E: E event-ordering+: EO+(Info) lambda: x.A[x] top: Top pair: <a, b> fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) void: Void false: False le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B function: x:A  B[x] all: x:A. B[x] universe: Type uall: [x:A]. B[x] uimplies: b supposing a so_lambda: x y.t[x; y] prop: sv-class: Singlevalued(X) isect: x:A. B[x] member: t  T axiom: Ax equal: s = t eclass: EClass(A[eo; e]) es-interface-or-left: es-interface-or-left(X) es-interface-or: (X | Y) CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  CollapseTHENA: Error :CollapseTHENA,  Try: Error :Try,  RepeatFor: Error :RepeatFor,  tactic: Error :tactic
Lemmas :  nat_wf bag-size_wf assert_wf bool_wf assert_of_eq_int eqtt_to_assert uiff_transitivity es-interface-or-left_wf top_wf es-interface-or_wf bag_wf es-E_wf event-ordering+_wf event-ordering+_inc eclass_wf sv-class_wf member_wf not_wf eqff_to_assert assert_of_bnot not_functionality_wrt_uiff bnot_wf eq_int_wf bag-only_wf Error :oobboth_wf,  Error :one_or_both_wf,  single-bag_wf ifthenelse_wf oob-getleft?_wf unit_wf bag-size-one bag-size-zero le_wf false_wf empty-bag_wf subtype_rel_wf es-interface-top

\mforall{}[Info,A:Type].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(Top)].
    es-interface-or-left((X  |  Y))  =  X  supposing  Singlevalued(X)


Date html generated: 2011_08_16-PM-04_23_34
Last ObjectModification: 2011_06_20-AM-00_49_13

Home Index