{ 
[Info,A:Type]. 
[X:EClass(Top)]. 
[Y:EClass(A)].
    es-interface-or-right((X | Y)) = Y supposing Singlevalued(Y) }
{ Proof }
Definitions occuring in Statement : 
es-interface-or-right: es-interface-or-right(X), 
es-interface-or: (X | Y), 
sv-class: Singlevalued(X), 
eclass: EClass(A[eo; e]), 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
top: Top, 
universe: Type, 
equal: s = t
Definitions : 
one_or_both_ind_oobright: Error :one_or_both_ind_oobright_compseq_tag_def, 
nil: [], 
one_or_both_ind_oobleft: Error :one_or_both_ind_oobleft_compseq_tag_def, 
one_or_both_ind_oobboth: Error :one_or_both_ind_oobboth_compseq_tag_def, 
oobboth-bval: Error :oobboth-bval, 
oobright-rval: Error :oobright-rval, 
oobboth?: Error :oobboth?, 
oobright?: Error :oobright?, 
oob-getright: oob-getright(x), 
oob-hasright: oob-hasright(x), 
sqequal: s ~ t, 
bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o}, 
bag_only_single: bag_only_single{bag_only_single_compseq_tag_def:o}(x), 
bag_size_single: bag_size_single{bag_size_single_compseq_tag_def:o}(x), 
oobright: Error :oobright, 
one_or_both: Error :one_or_both, 
empty-bag: {}, 
oob-getright?: oob-getright?(x), 
oobleft: Error :oobleft, 
bag-only: only(bs), 
oobboth: Error :oobboth, 
single-bag: {x}, 
lt_int: i <z j, 
le_int: i 
z j, 
bfalse: ff, 
real:
, 
grp_car: |g|, 
nat:
, 
limited-type: LimitedType, 
btrue: tt, 
null: null(as), 
set_blt: a <
 b, 
grp_blt: a <
 b, 
infix_ap: x f y, 
dcdr-to-bool: [d]
, 
bl-all: (
x
L.P[x])_b, 
bl-exists: (
x
L.P[x])_b, 
b-exists: (
i<n.P[i])_b, 
eq_type: eq_type(T;T'), 
qeq: qeq(r;s), 
q_less: q_less(r;s), 
q_le: q_le(r;s), 
deq-member: deq-member(eq;x;L), 
deq-disjoint: deq-disjoint(eq;as;bs), 
deq-all-disjoint: deq-all-disjoint(eq;ass;bs), 
eq_id: a = b, 
eq_lnk: a = b, 
es-eq-E: e = e', 
es-bless: e <loc e', 
es-ble: e 
loc e', 
bimplies: p 

 q, 
band: p 
 q, 
bor: p 
q, 
natural_number: $n, 
bag-size: bag-size(bs), 
eq_int: (i =
 j), 
bnot: 
b, 
int:
, 
unit: Unit, 
union: left + right, 
implies: P 
 Q, 
bool:
, 
eclass-compose1: f o X, 
oob-apply: oob-apply(xs;ys), 
eclass-compose2: eclass-compose2(f;X;Y), 
es-filter-image: f[X], 
record-select: r.x, 
set: {x:A| B[x]} , 
decide: case b of inl(x) => s[x] | inr(y) => t[y], 
ifthenelse: if b then t else f fi , 
assert:
b, 
apply: f a, 
eq_atom: x =a y, 
eq_atom: eq_atom$n(x;y), 
dep-isect: Error :dep-isect, 
record+: record+, 
bag: bag(T), 
subtype: S 
 T, 
event_ordering: EO, 
es-E: E, 
event-ordering+: EO+(Info), 
lambda:
x.A[x], 
top: Top, 
pair: <a, b>, 
fpf: a:A fp-> B[a], 
strong-subtype: strong-subtype(A;B), 
void: Void, 
false: False, 
le: A 
 B, 
ge: i 
 j , 
not:
A, 
less_than: a < b, 
product: x:A 
 B[x], 
and: P 
 Q, 
uiff: uiff(P;Q), 
subtype_rel: A 
r B, 
function: x:A 
 B[x], 
all:
x:A. B[x], 
universe: Type, 
uall:
[x:A]. B[x], 
uimplies: b supposing a, 
so_lambda: 
x y.t[x; y], 
prop:
, 
sv-class: Singlevalued(X), 
isect:
x:A. B[x], 
member: t 
 T, 
axiom: Ax, 
equal: s = t, 
eclass: EClass(A[eo; e]), 
es-interface-or-right: es-interface-or-right(X), 
es-interface-or: (X | Y), 
CollapseTHEN: Error :CollapseTHEN, 
Auto: Error :Auto, 
CollapseTHENA: Error :CollapseTHENA, 
Try: Error :Try, 
RepeatFor: Error :RepeatFor, 
tactic: Error :tactic
Lemmas : 
nat_wf, 
bag-size_wf, 
top_wf, 
assert_wf, 
bool_wf, 
assert_of_eq_int, 
eqtt_to_assert, 
uiff_transitivity, 
es-interface-or-right_wf, 
es-interface-or_wf, 
bag_wf, 
es-E_wf, 
event-ordering+_wf, 
event-ordering+_inc, 
eclass_wf, 
sv-class_wf, 
member_wf, 
not_wf, 
eqff_to_assert, 
assert_of_bnot, 
not_functionality_wrt_uiff, 
bnot_wf, 
eq_int_wf, 
bag-only_wf, 
Error :oobboth_wf, 
Error :one_or_both_wf, 
single-bag_wf, 
ifthenelse_wf, 
oob-getright?_wf, 
unit_wf, 
bag-size-one, 
bag-size-zero, 
le_wf, 
false_wf, 
empty-bag_wf, 
subtype_rel_wf, 
es-interface-top
\mforall{}[Info,A:Type].  \mforall{}[X:EClass(Top)].  \mforall{}[Y:EClass(A)].
    es-interface-or-right((X  |  Y))  =  Y  supposing  Singlevalued(Y)
Date html generated:
2011_08_16-PM-04_24_02
Last ObjectModification:
2011_06_20-AM-00_49_27
Home
Index