{ [Info,A:Type]. [I:EClass(A)]. [P:es:EO+(Info)  E  ].
  [p:es:EO+(Info). e:E.  Dec(P[es;e])].
    (((I|p)|p) = (I|p)) }

{ Proof }



Definitions occuring in Statement :  es-interface-restrict: (I|p) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] function: x:A  B[x] universe: Type equal: s = t
Definitions :  inr: inr x  limited-type: LimitedType so_apply: x[s] guard: {T} l_member: (x  l) pair: <a, b> fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) void: Void false: False set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] assert: b le: A  B ge: i  j  less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) empty-bag: {} implies: P  Q subtype_rel: A r B eq_atom: eq_atom$n(x;y) atom: Atom top: Top es-base-E: es-base-E(es) token: "$token" eq_atom: x =a y ifthenelse: if b then t else f fi  record-select: r.x dep-isect: Error :dep-isect,  record+: record+ bag: bag(T) not: A union: left + right or: P  Q uimplies: b supposing a lambda: x.A[x] subtype: S  T axiom: Ax es-interface-restrict: (I|p) apply: f a so_apply: x[s1;s2] decidable: Dec(P) equal: s = t so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) prop: universe: Type es-E: E event_ordering: EO event-ordering+: EO+(Info) uall: [x:A]. B[x] isect: x:A. B[x] member: t  T all: x:A. B[x] function: x:A  B[x] Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  D: Error :D,  MaAuto: Error :MaAuto,  CollapseTHENA: Error :CollapseTHENA
Lemmas :  es-interface-restrict_wf bag_wf not_wf es-E_wf event-ordering+_wf event-ordering+_inc subtype_rel_self es-base-E_wf es-interface-restrict-trivial eclass_wf decidable_wf empty-bag_wf

\mforall{}[Info,A:Type].  \mforall{}[I:EClass(A)].  \mforall{}[P:es:EO+(Info)  {}\mrightarrow{}  E  {}\mrightarrow{}  \mBbbP{}].
\mforall{}[p:\mforall{}es:EO+(Info).  \mforall{}e:E.    Dec(P[es;e])].
    (((I|p)|p)  =  (I|p))


Date html generated: 2011_08_16-PM-04_27_16
Last ObjectModification: 2011_06_20-AM-00_51_22

Home Index