{ [Info:Type]. [es:EO+(Info)]. [X:EClass()]. [e:E].
    (e(X)
    = if e  X then if e  prior(X) then prior(X)(e)(X) else 0 fi  + X(e)
      if e  prior(X) then prior(X)(e)(X)
      else 0
      fi ) }

{ Proof }



Definitions occuring in Statement :  es-interface-sum: e(X) es-prior-interface: prior(X) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E ifthenelse: if b then t else f fi  uall: [x:A]. B[x] add: n + m natural_number: $n int: universe: Type equal: s = t
Definitions :  uall: [x:A]. B[x] es-interface-sum: e(X) member: t  T so_lambda: x y.t[x; y] ifthenelse: if b then t else f fi  top: Top all: x:A. B[x] implies: P  Q btrue: tt prop: es-E-interface: E(X) bfalse: ff rev_implies: P  Q iff: P  Q and: P  Q so_apply: x[s1;s2] bool: unit: Unit uimplies: b supposing a subtype: S  T it: guard: {T}
Lemmas :  es-E_wf eclass_wf event-ordering+_wf event-ordering+_inc in-eclass_wf bool_wf iff_weakening_uiff assert_wf eqtt_to_assert es-prior-interface_wf es-E-interface_wf es-interface-subtype_rel2 top_wf es-interface-local-state_wf eclass-val_wf2 eclass-val_wf not_wf uiff_transitivity bnot_wf eqff_to_assert assert_of_bnot es-interface-local-state-cases

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(\mBbbZ{})].  \mforall{}[e:E].
    (\mSigma{}\mleq{}e(X)
    =  if  e  \mmember{}\msubb{}  X  then  if  e  \mmember{}\msubb{}  prior(X)  then  \mSigma{}\mleq{}prior(X)(e)(X)  else  0  fi    +  X(e)
        if  e  \mmember{}\msubb{}  prior(X)  then  \mSigma{}\mleq{}prior(X)(e)(X)
        else  0
        fi  )


Date html generated: 2011_08_16-PM-05_35_00
Last ObjectModification: 2011_06_20-AM-01_27_53

Home Index