Nuprl Lemma : es-interface-union-left

[Info,A:Type]. [X:EClass(A)]. [Y:EClass(Top)].  left(X+Y) = X supposing Singlevalued(X)


Proof not projected




Definitions occuring in Statement :  es-interface-union: X+Y es-interface-left: left(X) sv-class: Singlevalued(X) eclass: EClass(A[eo; e]) uimplies: b supposing a uall: [x:A]. B[x] top: Top universe: Type equal: s = t
Definitions :  so_lambda: x y.t[x; y] bfalse: ff btrue: tt implies: P  Q all: x:A. B[x] eclass-compose2: eclass-compose2(f;X;Y) eq_int: (i = j) ifthenelse: if b then t else f fi  eclass-compose1: f o X member: t  T es-interface-union: X+Y es-interface-left: left(X) uimplies: b supposing a eclass: EClass(A[eo; e]) uall: [x:A]. B[x] prop: reduce: reduce(f;k;as) filter: filter(P;l) ycomb: Y bag-map: bag-map(f;bs) bag-mapfilter: bag-mapfilter(f;P;bs) isl: isl(x) bag-filter: [xb|p[x]] map: map(f;as) single-bag: {x} bag-separate: bag-separate(bs) pi1: fst(t) so_apply: x[s1;s2] and: P  Q uiff: uiff(P;Q) unit: Unit bool: subtype: S  T it: in-eclass: e  X empty-bag: {}
Lemmas :  eclass_wf event-ordering+_wf sv-class_wf es-interface-union_wf top_wf es-interface-left_wf event-ordering+_inc es-E_wf assert_of_bnot eqff_to_assert not_wf bnot_wf assert_wf equal_wf uiff_transitivity eqtt_to_assert bool_wf es-interface-top in-eclass_wf pi1_wf_top bag_wf empty-bag_wf

\mforall{}[Info,A:Type].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(Top)].    left(X+Y)  =  X  supposing  Singlevalued(X)


Date html generated: 2012_01_23-PM-12_25_08
Last ObjectModification: 2011_12_14-AM-09_20_00

Home Index