{ [Info:Type]. [es:EO+(Info)]. [X:EClass(Top)]. [e:E].
    [p:E]
      (prior(X)(p) = prior(X)(e)) supposing 
         ((p <loc e) and 
         (prior(X)(e) <loc p)) 
    supposing e  prior(X) }

{ Proof }



Definitions occuring in Statement :  es-prior-interface: prior(X) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-locl: (e <loc e') es-E: E assert: b uimplies: b supposing a uall: [x:A]. B[x] top: Top universe: Type equal: s = t
Definitions :  uall: [x:A]. B[x] top: Top uimplies: b supposing a member: t  T all: x:A. B[x] prop: so_lambda: x y.t[x; y] and: P  Q exists: x:A. B[x] cand: A c B implies: P  Q so_apply: x[s1;s2] rev_implies: P  Q iff: P  Q decidable: Dec(P) or: P  Q es-locl: (e <loc e') not: A false: False subtype: S  T
Lemmas :  es-prior-interface-val es-locl_wf eclass-val_wf2 es-prior-interface_wf es-E-interface-subtype_rel es-E_wf assert_wf in-eclass_wf es-interface-subtype_rel2 es-E-interface_wf event-ordering+_inc event-ordering+_wf top_wf eclass_wf es-is-prior-interface es-prior-interface-val-unique es-locl_transitivity2 es-le_weakening decidable__es-locl es-le-not-locl

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[e:E].
    \mforall{}[p:E].  (prior(X)(p)  =  prior(X)(e))  supposing  ((p  <loc  e)  and  (prior(X)(e)  <loc  p)) 
    supposing  \muparrow{}e  \mmember{}\msubb{}  prior(X)


Date html generated: 2011_08_16-PM-04_47_04
Last ObjectModification: 2011_06_20-AM-01_05_03

Home Index