{ EO r event_ordering{j:l} supposing Type r {j} }

{ Proof }



Definitions occuring in Statement :  event_ordering: EO subtype_rel: A r B uimplies: b supposing a universe: Type
Definitions :  member: t  T universe: Type intensional-universe: IType false: False void: Void guard: {T} lt_int: i <z j le_int: i z j bfalse: ff btrue: tt null: null(as) set_blt: a < b grp_blt: a < b dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) name_eq: name_eq(x;y) eq_id: a = b eq_lnk: a = b bimplies: p  q band: p  q bor: p q assert: b bnot: b unit: Unit so_lambda: x.t[x] real: grp_car: |g| subtype: S  T int: limited-type: LimitedType tag-by: zT rev_implies: P  Q iff: P  Q fset: FSet{T} stream: stream(A) dataflow: dataflow(A;B) isect2: T1  T2 b-union: A  B true: True fpf-sub: f  g deq: EqDecider(T) ma-state: State(ds) bag: bag(T) set: {x:A| B[x]}  fpf: a:A fp-B[a] sq_type: SQType(T) eq_atom: eq_atom$n(x;y) bool: prop: nat: l_member: (x  l) implies: P  Q list: type List exists: x:A. B[x] infix_ap: x f y union: left + right or: P  Q Id: Id apply: f a token: "$token" eq_atom: x =a y ifthenelse: if b then t else f fi  record-select: r.x record: record(x.T[x]) dep-isect: Error :dep-isect,  record+: record+ fpf-cap: f(x)?z equal: s = t event_ordering: EO less_than: a < b all: x:A. B[x] uall: [x:A]. B[x] uiff: uiff(P;Q) and: P  Q product: x:A  B[x] uimplies: b supposing a isect: x:A. B[x] ge: i  j  le: A  B not: A strong-subtype: strong-subtype(A;B) subtype_rel: A r B THENL_cons: Error :THENL_nil,  MaAuto: Error :MaAuto,  Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic,  THENL_cons: Error :THENL_cons,  THENL_v2: Error :THENL,  RepeatFor: Error :RepeatFor,  RepUR: Error :RepUR,  top: Top atom: Atom function: x:A  B[x] AssertBY: Error :AssertBY,  Unfold: Error :Unfold,  Try: Error :Try,  D: Error :D
Lemmas :  Id_wf subtype_rel_wf member_wf bool_wf subtype_rel_self l_member_wf not_wf nat_wf event_ordering_wf subtype_base_sq top_wf record_wf uiff_transitivity eqtt_to_assert assert_of_eq_atom eqff_to_assert assert_wf assert_of_bnot not_functionality_wrt_uiff eq_atom_wf bnot_wf atom_subtype_base record+_wf subtype_rel_function intensional-universe_wf

EO  \msubseteq{}r  event\_ordering\{j:l\}  supposing  Type  \msubseteq{}r  \mBbbU{}\{j\}


Date html generated: 2011_08_16-AM-10_19_41
Last ObjectModification: 2011_05_23-PM-02_23_16

Home Index