{ 
[M:Type 
 Type]. 
[r:pRunType(P.M[P])].
    finite-run-lt-witness(r) 
 rel_finite(runEvents(r);run-lt(r)) 
    supposing 
e:runEvents(r). ((fst(fst(run-info(r;e)))) < run-event-step(e)) }
{ Proof }
Definitions occuring in Statement : 
finite-run-lt-witness: finite-run-lt-witness(r), 
run-lt: run-lt(r), 
run-event-step: run-event-step(e), 
runEvents: runEvents(r), 
run-info: run-info(r;e), 
pRunType: pRunType(T.M[T]), 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
so_apply: x[s], 
pi1: fst(t), 
all:
x:A. B[x], 
member: t 
 T, 
less_than: a < b, 
function: x:A 
 B[x], 
universe: Type, 
rel_finite: rel_finite(T;R)
Definitions : 
atom: Atom, 
decide_bfalse: decide_bfalse{decide_bfalse_compseq_tag_def:o}(v11.g[v11]; v21.f[v21]), 
atom: Atom$n, 
sq_type: SQType(T), 
false: False, 
list_ind: list_ind def, 
rel_exp: R^n, 
sqequal: s ~ t, 
limited-type: LimitedType, 
guard: {T}, 
natural_number: $n, 
decide: case b of inl(x) => s[x] | inr(y) => t[y], 
assert:
b, 
pair: <a, b>, 
spreadn: spread3, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
btrue: tt, 
from-upto: [n, m), 
member-mapfilter-witness: member-mapfilter-witness(), 
prior-run-events: prior-run-events(r;t), 
spread: spread def, 
void: Void, 
set: {x:A| B[x]} , 
real:
, 
grp_car: |g|, 
nat:
, 
subtype: S 
 T, 
pMsg: pMsg(P.M[P]), 
Id: Id, 
int:
, 
so_apply: x[s], 
eclass: EClass(A[eo; e]), 
fpf: a:A fp-> B[a], 
strong-subtype: strong-subtype(A;B), 
le: A 
 B, 
ge: i 
 j , 
not:
A, 
product: x:A 
 B[x], 
and: P 
 Q, 
uiff: uiff(P;Q), 
subtype_rel: A 
r B, 
prop:
, 
universe: Type, 
uall:
[x:A]. B[x], 
uimplies: b supposing a, 
so_lambda: 
x.t[x], 
isect:
x:A. B[x], 
finite-run-lt-witness: finite-run-lt-witness(r), 
pRunType: pRunType(T.M[T]), 
equal: s = t, 
Auto: Error :Auto, 
CollapseTHEN: Error :CollapseTHEN, 
RepeatFor: Error :RepeatFor, 
Try: Error :Try, 
RepUR: Error :RepUR, 
Unfold: Error :Unfold, 
finite-run-lt, 
apply: f a, 
run-lt: run-lt(r), 
runEvents: runEvents(r), 
rel_finite: rel_finite(T;R), 
member: t 
 T, 
AssertBY: Error :AssertBY, 
l_member: (x 
 l), 
infix_ap: x f y, 
implies: P 
 Q, 
function: x:A 
 B[x], 
list: type List, 
exists:
x:A. B[x], 
axiom: Ax, 
lambda:
x.A[x], 
run-event-step: run-event-step(e), 
run-info: run-info(r;e), 
pi1: fst(t), 
less_than: a < b, 
all:
x:A. B[x], 
top: Top, 
Unfolds: Error :Unfolds
Lemmas : 
prior-run-events_wf, 
top_wf, 
runEvents_wf, 
pRunType_wf, 
pMsg_wf, 
member_wf, 
Id_wf, 
nat_wf, 
run-event-step_wf, 
run-info_wf, 
pi1_wf_top, 
rel_finite_wf, 
run-lt_wf, 
l_member_wf, 
uall_wf, 
finite-run-lt, 
subtype_base_sq, 
product_subtype_base, 
list_subtype_base, 
assert_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
atom2_subtype_base
\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[r:pRunType(P.M[P])].
    finite-run-lt-witness(r)  \mmember{}  rel\_finite(runEvents(r);run-lt(r)) 
    supposing  \mforall{}e:runEvents(r).  ((fst(fst(run-info(r;e))))  <  run-event-step(e))
Date html generated:
2011_08_17-PM-03_37_38
Last ObjectModification:
2011_06_18-AM-11_19_02
Home
Index