{ [M:Type  Type]. [t:]. [r:t  (  Id  Id  pMsg(P.M[P])?
                                         System(P.M[P]))].
    (first-choosable(r;t)  ) }

{ Proof }



Definitions occuring in Statement :  first-choosable: first-choosable(r;t) System: System(P.M[P]) pMsg: pMsg(P.M[P]) Id: Id int_seg: {i..j} nat_plus: nat: uall: [x:A]. B[x] so_apply: x[s] unit: Unit member: t  T function: x:A  B[x] product: x:A  B[x] union: left + right natural_number: $n int: universe: Type
Definitions :  uall: [x:A]. B[x] so_apply: x[s] member: t  T first-choosable: first-choosable(r;t) let: let so_lambda: x.t[x] all: x:A. B[x] implies: P  Q int_seg: {i..j} pi2: snd(t) run-system: run-system(r;t) lelt: i  j < k and: P  Q le: A  B not: A false: False nat: ifthenelse: if b then t else f fi  prop: btrue: tt bfalse: ff nat_plus: System: System(P.M[P]) ldag: LabeledDAG(T) unit: Unit bool: iff: P  Q uimplies: b supposing a it:
Lemmas :  int_seg_wf Id_wf pMsg_wf unit_wf System_wf nat_plus_wf labeled-graph_wf pInTransit_wf le_wf lt_int_wf search_wf lg-size_wf lg-is-source_wf nat_wf bool_wf iff_weakening_uiff uiff_transitivity assert_wf eqtt_to_assert assert_of_lt_int le_int_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int

\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[t:\mBbbN{}\msupplus{}].  \mforall{}[r:\mBbbN{}t  {}\mrightarrow{}  (\mBbbZ{}  \mtimes{}  Id  \mtimes{}  Id  \mtimes{}  pMsg(P.M[P])?  \mtimes{}  System(P.M[P]))].
    (first-choosable(r;t)  \mmember{}  \mBbbN{})


Date html generated: 2011_08_17-PM-03_42_43
Last ObjectModification: 2011_06_18-AM-11_23_58

Home Index