Nuprl Lemma : fpf-as-apply-alist

[A,B:Type]. [f:a:A fp-B]. [eq:EqDecider(A)].
  (f = <fpf-domain(f), x.outl(apply-alist(eq;map(x.<x, f(x)>;fpf-domain(f));x))>)


Proof not projected




Definitions occuring in Statement :  fpf-ap: f(x) fpf-domain: fpf-domain(f) fpf: a:A fp-B[a] map: map(f;as) outl: outl(x) uall: [x:A]. B[x] lambda: x.A[x] pair: <a, b> universe: Type equal: s = t apply-alist: apply-alist(eq;L;x) deq: EqDecider(T)
Definitions :  so_lambda: x.t[x] pi2: snd(t) pi1: fst(t) member: t  T fpf-ap: f(x) fpf-domain: fpf-domain(f) fpf: a:A fp-B[a] uall: [x:A]. B[x] top: Top prop: suptype: suptype(S; T) subtype: S  T all: x:A. B[x] lelt: i  j < k outl: outl(x) and: P  Q int_seg: {i..j} false: False implies: P  Q le: A  B not: A so_apply: x[s] nat: exists: x:A. B[x] uimplies: b supposing a
Lemmas :  fpf_wf deq_wf list-subtype l_member_wf map_wf top_wf apply-alist-cases alist-domain-first less_than_wf nat_wf equal_wf and_wf length_wf_nat length-map length_wf lelt_wf pi2_wf pi1_wf_top select_wf map_select

\mforall{}[A,B:Type].  \mforall{}[f:a:A  fp->  B].  \mforall{}[eq:EqDecider(A)].
    (f  =  <fpf-domain(f),  \mlambda{}x.outl(apply-alist(eq;map(\mlambda{}x.<x,  f(x)>fpf-domain(f));x))>)


Date html generated: 2012_01_23-AM-11_53_23
Last ObjectModification: 2011_12_10-AM-11_52_54

Home Index