{ [X:Type]. [eq:EqDecider(X)]. [f,g:x:X fp-Type]. [x:X].
    (f(x)?Void = g(x)?Void) supposing (g(x)?Void and f(x)?Void and f || g) }

{ Proof }



Definitions occuring in Statement :  fpf-compatible: f || g fpf-cap: f(x)?z fpf: a:A fp-B[a] uimplies: b supposing a uall: [x:A]. B[x] void: Void universe: Type equal: s = t deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a member: t  T so_lambda: x.t[x] prop: ifthenelse: if b then t else f fi  all: x:A. B[x] implies: P  Q btrue: tt bfalse: ff fpf-cap: f(x)?z and: P  Q so_apply: x[s] bool: unit: Unit iff: P  Q fpf-compatible: f || g it:
Lemmas :  fpf-compatible_wf fpf_wf deq_wf fpf-cap_wf fpf-dom_wf fpf-trivial-subtype-top bool_wf assert_wf fpf-ap_wf not_wf bnot_wf iff_weakening_uiff eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot

\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[f,g:x:X  fp->  Type].  \mforall{}[x:X].
    (f(x)?Void  =  g(x)?Void)  supposing  (g(x)?Void  and  f(x)?Void  and  f  ||  g)


Date html generated: 2011_08_10-AM-07_58_45
Last ObjectModification: 2011_06_18-AM-08_18_35

Home Index