{ [A:Type]. [f:a:A fp-Type]. [eq:EqDecider(A)]. [x:A]. [z:Type].
    (f(x)?z  Type) }

{ Proof }



Definitions occuring in Statement :  fpf-cap: f(x)?z fpf: a:A fp-B[a] uall: [x:A]. B[x] member: t  T universe: Type deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] member: t  T fpf-cap: f(x)?z so_lambda: x.t[x] prop: ifthenelse: if b then t else f fi  all: x:A. B[x] implies: P  Q btrue: tt bfalse: ff so_apply: x[s] uimplies: b supposing a bool: unit: Unit iff: P  Q and: P  Q it:
Lemmas :  deq_wf fpf_wf fpf-dom_wf fpf-trivial-subtype-top bool_wf assert_wf fpf-ap_wf not_wf bnot_wf iff_weakening_uiff eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot

\mforall{}[A:Type].  \mforall{}[f:a:A  fp->  Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[x:A].  \mforall{}[z:Type].    (f(x)?z  \mmember{}  Type)


Date html generated: 2011_08_10-AM-07_55_36
Last ObjectModification: 2011_06_18-AM-08_16_46

Home Index