{ [A:Type]. [eq:EqDecider(A)]. [B:A  Type]. [f:a:A fp-B[a]]. [x:A].
  [v:B[x]].
    uiff(f || x : v;v = f(x) supposing x  dom(f)) }

{ Proof }



Definitions occuring in Statement :  fpf-single: x : v fpf-compatible: f || g fpf-ap: f(x) fpf-dom: x  dom(f) fpf: a:A fp-B[a] assert: b uiff: uiff(P;Q) uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A  B[x] universe: Type equal: s = t deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] so_apply: x[s] uiff: uiff(P;Q) fpf-compatible: f || g uimplies: b supposing a member: t  T and: P  Q prop: top: Top so_lambda: x.t[x] all: x:A. B[x] implies: P  Q fpf-ap: f(x) fpf-single: x : v pi2: snd(t) squash: T true: True rev_implies: P  Q iff: P  Q
Lemmas :  assert_wf fpf-dom_wf fpf-trivial-subtype-top fpf-compatible_wf fpf-single_wf top_wf fpf-ap_wf fpf_wf deq_wf eqof_wf fpf-single-dom-sq iff_weakening_uiff uiff_inversion deq_property squash_wf true_wf bool_wf member_wf

\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:a:A  fp->  B[a]].  \mforall{}[x:A].  \mforall{}[v:B[x]].
    uiff(f  ||  x  :  v;v  =  f(x)  supposing  \muparrow{}x  \mmember{}  dom(f))


Date html generated: 2011_08_10-AM-08_06_37
Last ObjectModification: 2011_06_18-AM-08_24_55

Home Index