{ [A:Type]. [eq:EqDecider(A)]. [B:A  Type]. [f:a:A fp-B[a]]. [x:A].
  [v:B[x]].
    f || x : v supposing x  dom(f) }

{ Proof }



Definitions occuring in Statement :  fpf-single: x : v fpf-compatible: f || g fpf-dom: x  dom(f) fpf: a:A fp-B[a] assert: b uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] not: A function: x:A  B[x] universe: Type deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] so_apply: x[s] uimplies: b supposing a fpf-compatible: f || g member: t  T all: x:A. B[x] implies: P  Q and: P  Q prop: top: Top so_lambda: x.t[x] not: A iff: P  Q false: False
Lemmas :  iff_weakening_uiff assert_wf fpf-dom_wf fpf-single_wf fpf-single-dom top_wf fpf-trivial-subtype-top not_wf fpf_wf deq_wf

\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:a:A  fp->  B[a]].  \mforall{}[x:A].  \mforall{}[v:B[x]].
    f  ||  x  :  v  supposing  \mneg{}\muparrow{}x  \mmember{}  dom(f)


Date html generated: 2011_08_10-AM-08_06_31
Last ObjectModification: 2011_06_18-AM-08_24_52

Home Index