{ [A:Type]. [B:A  Type]. [eq:EqDecider(A)]. [f1,g,f2:a:A fp-B[a]].
    (f1  f2  g) supposing (f2  g and f1  g) }

{ Proof }



Definitions occuring in Statement :  fpf-join: f  g fpf-sub: f  g fpf: a:A fp-B[a] uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A  B[x] universe: Type deq: EqDecider(T)
Definitions :  guard: {T} sq_type: SQType(T) subtype: S  T l_member: (x  l) list: type List top: Top bool: fpf-empty: strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b and: P  Q uiff: uiff(P;Q) set: {x:A| B[x]}  subtype_rel: A r B fpf-join: f  g fpf-ap: f(x) fpf-dom: x  dom(f) axiom: Ax pair: <a, b> void: Void false: False true: True decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b product: x:A  B[x] cand: A c B implies: P  Q prop: fpf-sub: f  g uimplies: b supposing a lambda: x.A[x] all: x:A. B[x] isect: x:A. B[x] uall: [x:A]. B[x] fpf: a:A fp-B[a] so_lambda: x.t[x] so_apply: x[s] apply: f a member: t  T equal: s = t universe: Type deq: EqDecider(T) function: x:A  B[x] Repeat: Error :Repeat,  MaAuto: Error :MaAuto,  Complete: Error :Complete,  Try: Error :Try,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic,  rev_implies: P  Q iff: P  Q fpf-compatible: f || g
Lemmas :  subtype_rel_wf fpf-compatible_wf iff_wf rev_implies_wf fpf-join-idempotent fpf-join-sub member_wf fpf_wf top_wf l_member_wf fpf-dom_wf fpf-trivial-subtype-top assert_wf fpf-sub_wf assert_witness pair_wf deq_wf fpf-join_wf

\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f1,g,f2:a:A  fp->  B[a]].
    (f1  \moplus{}  f2  \msubseteq{}  g)  supposing  (f2  \msubseteq{}  g  and  f1  \msubseteq{}  g)


Date html generated: 2011_08_10-AM-08_00_47
Last ObjectModification: 2011_06_18-AM-08_19_38

Home Index