{ [A:Type]. [P:A  ]. [x:A].
    [f:x:A fp-Top]. [eq:EqDecider(A)]. [z:Top].
      (fpf-restrict(f;P)(x)?z ~ f(x)?z) 
    supposing (P x) }

{ Proof }



Definitions occuring in Statement :  fpf-restrict: fpf-restrict(f;P) fpf-cap: f(x)?z fpf: a:A fp-B[a] assert: b bool: uimplies: b supposing a uall: [x:A]. B[x] top: Top apply: f a function: x:A  B[x] universe: Type sqequal: s ~ t deq: EqDecider(T)
Definitions :  fpf-cap: f(x)?z member: t  T so_lambda: x.t[x] prop: and: P  Q iff: P  Q implies: P  Q rev_implies: P  Q uall: [x:A]. B[x] so_apply: x[s] sq_type: SQType(T) uimplies: b supposing a all: x:A. B[x] guard: {T}
Lemmas :  top_wf deq_wf fpf_wf assert_wf bool_wf subtype_base_sq bool_subtype_base iff_imp_equal_bool fpf-dom_wf fpf-restrict_wf2 l_member_wf fpf-domain_wf iff_functionality_wrt_iff member-fpf-domain filter_wf member_filter

\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x:A].
    \mforall{}[f:x:A  fp->  Top].  \mforall{}[eq:EqDecider(A)].  \mforall{}[z:Top].    (fpf-restrict(f;P)(x)?z  \msim{}  f(x)?z) 
    supposing  \muparrow{}(P  x)


Date html generated: 2011_08_10-AM-08_09_51
Last ObjectModification: 2011_06_18-AM-08_26_03

Home Index