{ [A:Type]. [P:A  ]. [B:A  Type]. [eq:EqDecider(A)].
  [f,g:a:{a:A| P[a]}  fp-B[a]].
    f  g supposing f  g }

{ Proof }



Definitions occuring in Statement :  fpf-sub: f  g fpf: a:A fp-B[a] uimplies: b supposing a uall: [x:A]. B[x] prop: so_apply: x[s] set: {x:A| B[x]}  function: x:A  B[x] universe: Type deq: EqDecider(T)
Definitions :  suptype: suptype(S; T) rev_implies: P  Q iff: P  Q eq_knd: a = b fpf-domain: fpf-domain(f) intensional-universe: IType sq_type: SQType(T) subtype: S  T fpf-empty: IdLnk: IdLnk Id: Id append: as @ bs locl: locl(a) Knd: Knd union: left + right or: P  Q guard: {T} l_member: (x  l) bool: top: Top fpf-ap: f(x) fpf-dom: x  dom(f) axiom: Ax pair: <a, b> void: Void false: False true: True decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  cand: A c B implies: P  Q strong-subtype: strong-subtype(A;B) list: type List le: A  B ge: i  j  not: A less_than: a < b and: P  Q uiff: uiff(P;Q) assert: b product: x:A  B[x] subtype_rel: A r B fpf-sub: f  g uimplies: b supposing a lambda: x.A[x] set: {x:A| B[x]}  apply: f a so_apply: x[s] so_lambda: x.t[x] fpf: a:A fp-B[a] isect: x:A. B[x] all: x:A. B[x] prop: uall: [x:A]. B[x] deq: EqDecider(T) function: x:A  B[x] member: t  T equal: s = t universe: Type MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic,  cons: [car / cdr] nil: [] fpf_ap_pair: fpf_ap_pair{fpf_ap_pair_compseq_tag_def:o}(x; eq; f; d) bor: p q band: p  q bimplies: p  q bnot: b eq_lnk: a = b eq_id: a = b eq_str: Error :eq_str,  deq-all-disjoint: deq-all-disjoint(eq;ass;bs) deq-disjoint: deq-disjoint(eq;as;bs) deq-member: deq-member(eq;x;L) natural_number: $n int: length: ||as|| exists: x:A. B[x] nat: select: l[i] squash: T
Lemmas :  deq-member_wf select_wf nat_properties assert-deq-member subtype_rel_wf fpf_wf top_wf fpf-trivial-subtype-top member_wf fpf-dom_wf assert_wf fpf-sub_wf assert_witness pair_wf deq_wf l_member_wf intensional-universe_wf fpf-type subtype-fpf3 strong-subtype_wf strong-subtype-set3 strong-subtype-self iff_wf bool_wf fpf-ap_wf strong-subtype-deq-subtype

\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f,g:a:\{a:A|  P[a]\}    fp->  B[a]].
    f  \msubseteq{}  g  supposing  f  \msubseteq{}  g


Date html generated: 2011_08_10-AM-07_56_56
Last ObjectModification: 2010_11_10-PM-02_33_08

Home Index