{ [A:Type]. [B:A  Type].
    eq:EqDecider(A). f,g:x:A fp-B[x] List. x:A. R:a:A
                                                          (B[a] List
                                                           B[a]
                                                           ).
      f(x)?[]  fpf-union(f;g;eq;R;x) }

{ Proof }



Definitions occuring in Statement :  fpf-union: fpf-union(f;g;eq;R;x) fpf-cap: f(x)?z fpf: a:A fp-B[a] bool: uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] isect: x:A. B[x] function: x:A  B[x] nil: [] list: type List universe: Type deq: EqDecider(T) l_contains: A  B
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] so_apply: x[s] fpf-cap: f(x)?z fpf-union: fpf-union(f;g;eq;R;x) ifthenelse: if b then t else f fi  band: p  q member: t  T so_lambda: x.t[x] implies: P  Q btrue: tt prop: bfalse: ff bool: unit: Unit iff: P  Q and: P  Q uimplies: b supposing a it:
Lemmas :  fpf-dom_wf fpf-trivial-subtype-top bool_wf iff_weakening_uiff assert_wf eqtt_to_assert l_contains_append fpf-ap_wf filter_wf not_wf uiff_transitivity bnot_wf eqff_to_assert assert_of_bnot l_contains_weakening l_contains_nil fpf_wf deq_wf

\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    \mforall{}eq:EqDecider(A).  \mforall{}f,g:x:A  fp->  B[x]  List.  \mforall{}x:A.  \mforall{}R:\mcap{}a:A.  (B[a]  List  {}\mrightarrow{}  B[a]  {}\mrightarrow{}  \mBbbB{}).
        f(x)?[]  \msubseteq{}  fpf-union(f;g;eq;R;x)


Date html generated: 2011_08_10-AM-07_56_06
Last ObjectModification: 2011_06_18-AM-08_17_00

Home Index