{ [Info:Type]. [es:EO+(Info)]. [A,B:Type]. [X:EClass(A)]. [Y:EClass(B)].
  [e:E].
    X+Y(e) = if e  X then inl X(e)  else inr Y(e)  fi  supposing e  X+Y }

{ Proof }



Definitions occuring in Statement :  es-interface-union: X+Y eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b ifthenelse: if b then t else f fi  uimplies: b supposing a uall: [x:A]. B[x] inr: inr x  inl: inl x  union: left + right universe: Type equal: s = t
Definitions :  atom: Atom es-base-E: es-base-E(es) token: "$token" es-E-interface: E(X) bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} void: Void empty-bag: {} single-bag: {x} bag-only: only(bs) true: True bag_only_single: bag_only_single{bag_only_single_compseq_tag_def:o}(x) bag_size_single: bag_size_single{bag_size_single_compseq_tag_def:o}(x) false: False lt_int: i <z j le_int: i z j bfalse: ff real: grp_car: |g| nat: limited-type: LimitedType btrue: tt null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q natural_number: $n apply: f a bag-size: bag-size(bs) eq_int: (i = j) bnot: b int: unit: Unit bool: eclass-compose2: eclass-compose2(f;X;Y) implies: P  Q fpf-dom: x  dom(f) lambda: x.A[x] subtype: S  T quotient: x,y:A//B[x; y] bag: bag(T) top: Top pair: <a, b> fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) record-select: r.x eq_atom: x =a y eq_atom: eq_atom$n(x;y) set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B function: x:A  B[x] all: x:A. B[x] axiom: Ax inr: inr x  inl: inl x  in-eclass: e  X ifthenelse: if b then t else f fi  es-interface-union: X+Y eclass-val: X(e) union: left + right prop: assert: b event_ordering: EO es-E: E uimplies: b supposing a equal: s = t event-ordering+: EO+(Info) universe: Type uall: [x:A]. B[x] so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) member: t  T isect: x:A. B[x] RepeatFor: Error :RepeatFor,  CollapseTHEN: Error :CollapseTHEN,  MaAuto: Error :MaAuto,  Auto: Error :Auto,  tactic: Error :tactic
Lemmas :  es-interface-union_wf in-eclass_wf assert_wf event-ordering+_inc es-E_wf es-interface-top subtype_rel_wf eclass_wf member_wf eclass-val_wf event-ordering+_wf bool_wf uiff_transitivity eqtt_to_assert assert_of_eq_int bag-size_wf nat_wf not_wf eqff_to_assert assert_of_bnot not_functionality_wrt_uiff bnot_wf eq_int_wf true_wf bag-only_wf false_wf es-interface-subtype_rel2 es-base-E_wf subtype_rel_self top_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[A,B:Type].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].  \mforall{}[e:E].
    X+Y(e)  =  if  e  \mmember{}\msubb{}  X  then  inl  X(e)    else  inr  Y(e)    fi    supposing  \muparrow{}e  \mmember{}\msubb{}  X+Y


Date html generated: 2011_08_16-PM-04_20_31
Last ObjectModification: 2011_06_20-AM-00_48_38

Home Index