{ [Info:Type]. [es:EO+(Info)]. [f,lb:Top]. [X:EClass(Top)]. [e:E].
    (e  (maximum f[v]  lb with v from X) ~ e  X) }

{ Proof }



Definitions occuring in Statement :  imax-class: (maximum f[v]  lb with v from X) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E uall: [x:A]. B[x] top: Top so_apply: x[s] universe: Type sqequal: s ~ t
Definitions :  uall: [x:A]. B[x] top: Top imax-class: (maximum f[v]  lb with v from X) member: t  T so_lambda: x y.t[x; y] sq_type: SQType(T) uimplies: b supposing a all: x:A. B[x] implies: P  Q guard: {T} so_apply: x[s1;s2] subtype: S  T
Lemmas :  subtype_base_sq bool_subtype_base is-interface-accum in-eclass_wf es-E_wf eclass_wf top_wf event-ordering+_wf event-ordering+_inc

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[f,lb:Top].  \mforall{}[X:EClass(Top)].  \mforall{}[e:E].
    (e  \mmember{}\msubb{}  (maximum  f[v]  \mgeq{}  lb  with  v  from  X)  \msim{}  e  \mmember{}\msubb{}  X)


Date html generated: 2011_08_16-PM-04_36_05
Last ObjectModification: 2011_06_20-AM-00_58_55

Home Index