{ [Info:Type]
    es:EO+(Info). X,Y:EClass(Top). e:E.
      (e  X)  (e  Y) supposing e  [X?Y] }

{ Proof }



Definitions occuring in Statement :  cond-class: [X?Y] in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uimplies: b supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] or: P  Q universe: Type
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: b supposing a member: t  T so_lambda: x y.t[x; y] implies: P  Q iff: P  Q and: P  Q so_apply: x[s1;s2] prop: subtype: S  T
Lemmas :  assert_witness in-eclass_wf cond-class_wf top_wf is-interface-conditional assert_wf es-E_wf event-ordering+_inc eclass_wf event-ordering+_wf

\mforall{}[Info:Type].  \mforall{}es:EO+(Info).  \mforall{}X,Y:EClass(Top).  \mforall{}e:E.    (\muparrow{}e  \mmember{}\msubb{}  X)  \mvee{}  (\muparrow{}e  \mmember{}\msubb{}  Y)  supposing  \muparrow{}e  \mmember{}\msubb{}  [X?Y]


Date html generated: 2011_08_16-AM-11_42_51
Last ObjectModification: 2011_06_20-AM-00_33_28

Home Index