Nuprl Lemma : lg-size-deliver-msg

[M:Type  Type]
  [t:]. [x:Id]. [m:pMsg(P.M[P])]. [Cs:component(P.M[P]) List]. [G:LabeledDAG(pInTransit(P.M[P]))].
    (lg-size(G)  lg-size(snd(deliver-msg(t;m;x;Cs;G)))) 
  supposing Continuous+(P.M[P])


Proof not projected




Definitions occuring in Statement :  deliver-msg: deliver-msg(t;m;x;Cs;L) pInTransit: pInTransit(P.M[P]) component: component(P.M[P]) pMsg: pMsg(P.M[P]) ldag: LabeledDAG(T) lg-size: lg-size(g) Id: Id strong-type-continuous: Continuous+(T.F[T]) nat: uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] pi2: snd(t) le: A  B function: x:A  B[x] list: type List universe: Type
Definitions :  so_lambda: x.t[x] false: False implies: P  Q not: A member: t  T le: A  B so_apply: x[s] uimplies: b supposing a uall: [x:A]. B[x] deliver-msg: deliver-msg(t;m;x;Cs;L) ycomb: Y list_accum: list_accum(x,a.f[x; a];y;l) pi2: snd(t) all: x:A. B[x] guard: {T} bfalse: ff btrue: tt ifthenelse: if b then t else f fi  deliver-msg-to-comp: deliver-msg-to-comp(t;m;x;S;C) component: component(P.M[P]) and: P  Q true: True squash: T prop: iff: P  Q rev_implies: P  Q nat: uiff: uiff(P;Q) unit: Unit bool: ldag: LabeledDAG(T) System: System(P.M[P]) it:
Lemmas :  strong-type-continuous_wf nat_wf Id_wf pMsg_wf component_wf pInTransit_wf ldag_wf lg-size_wf_dag not_functionality_wrt_uiff assert_of_bnot eqff_to_assert not_wf bnot_wf assert-eq-id eqtt_to_assert assert_wf equal_wf uiff_transitivity bool_wf eq_id_wf pExt_wf Process_wf Process-apply_wf add-cause_wf lg-append_wf_dag lg-size-append lg-size_wf true_wf squash_wf le_wf deliver-msg_wf System_wf

\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[t:\mBbbN{}].  \mforall{}[x:Id].  \mforall{}[m:pMsg(P.M[P])].  \mforall{}[Cs:component(P.M[P])  List].
    \mforall{}[G:LabeledDAG(pInTransit(P.M[P]))].
        (lg-size(G)  \mleq{}  lg-size(snd(deliver-msg(t;m;x;Cs;G)))) 
    supposing  Continuous+(P.M[P])


Date html generated: 2012_01_23-PM-12_42_11
Last ObjectModification: 2012_01_06-AM-10_24_03

Home Index