Nuprl Lemma : lg-size-deliver-msg
[M:Type 
 Type]
  
[t:
]. 
[x:Id]. 
[m:pMsg(P.M[P])]. 
[Cs:component(P.M[P]) List]. 
[G:LabeledDAG(pInTransit(P.M[P]))].
    (lg-size(G) 
 lg-size(snd(deliver-msg(t;m;x;Cs;G)))) 
  supposing Continuous+(P.M[P])
Proof not projected
Definitions occuring in Statement : 
deliver-msg: deliver-msg(t;m;x;Cs;L), 
pInTransit: pInTransit(P.M[P]), 
component: component(P.M[P]), 
pMsg: pMsg(P.M[P]), 
ldag: LabeledDAG(T), 
lg-size: lg-size(g), 
Id: Id, 
strong-type-continuous: Continuous+(T.F[T]), 
nat:
, 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
so_apply: x[s], 
pi2: snd(t), 
le: A 
 B, 
function: x:A 
 B[x], 
list: type List, 
universe: Type
Definitions : 
so_lambda: 
x.t[x], 
false: False, 
implies: P 
 Q, 
not:
A, 
member: t 
 T, 
le: A 
 B, 
so_apply: x[s], 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
deliver-msg: deliver-msg(t;m;x;Cs;L), 
ycomb: Y, 
list_accum: list_accum(x,a.f[x; a];y;l), 
pi2: snd(t), 
all:
x:A. B[x], 
guard: {T}, 
bfalse: ff, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
deliver-msg-to-comp: deliver-msg-to-comp(t;m;x;S;C), 
component: component(P.M[P]), 
and: P 
 Q, 
true: True, 
squash:
T, 
prop:
, 
iff: P 

 Q, 
rev_implies: P 
 Q, 
nat:
, 
uiff: uiff(P;Q), 
unit: Unit, 
bool:
, 
ldag: LabeledDAG(T), 
System: System(P.M[P]), 
it:
Lemmas : 
strong-type-continuous_wf, 
nat_wf, 
Id_wf, 
pMsg_wf, 
component_wf, 
pInTransit_wf, 
ldag_wf, 
lg-size_wf_dag, 
not_functionality_wrt_uiff, 
assert_of_bnot, 
eqff_to_assert, 
not_wf, 
bnot_wf, 
assert-eq-id, 
eqtt_to_assert, 
assert_wf, 
equal_wf, 
uiff_transitivity, 
bool_wf, 
eq_id_wf, 
pExt_wf, 
Process_wf, 
Process-apply_wf, 
add-cause_wf, 
lg-append_wf_dag, 
lg-size-append, 
lg-size_wf, 
true_wf, 
squash_wf, 
le_wf, 
deliver-msg_wf, 
System_wf
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[t:\mBbbN{}].  \mforall{}[x:Id].  \mforall{}[m:pMsg(P.M[P])].  \mforall{}[Cs:component(P.M[P])  List].
    \mforall{}[G:LabeledDAG(pInTransit(P.M[P]))].
        (lg-size(G)  \mleq{}  lg-size(snd(deliver-msg(t;m;x;Cs;G)))) 
    supposing  Continuous+(P.M[P])
Date html generated:
2012_01_23-PM-12_42_11
Last ObjectModification:
2012_01_06-AM-10_24_03
Home
Index