{ [B:Type]. [n:]. [A:n  Type]. [bags:k:n  bag(A k)].
  [f:funtype(n;A;B)].
    (lifting-gen-rev(n;f;bags)  bag(B)) }

{ Proof }



Definitions occuring in Statement :  lifting-gen-rev: lifting-gen-rev(n;f;bags) int_seg: {i..j} nat: uall: [x:A]. B[x] member: t  T apply: f a function: x:A  B[x] natural_number: $n universe: Type bag: bag(T) funtype: funtype(n;A;T)
Definitions :  tactic: Error :tactic,  Unfold: Error :Unfold,  sqequal: s ~ t subtract: n - m natural_number: $n CollapseTHENA: Error :CollapseTHENA,  RepeatFor: Error :RepeatFor,  CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  member: t  T equal: s = t isect: x:A. B[x] funtype: funtype(n;A;T) uall: [x:A]. B[x] function: x:A  B[x] int_seg: {i..j} apply: f a bag: bag(T) universe: Type nat: lifting-gen-rev: lifting-gen-rev(n;f;bags) axiom: Ax all: x:A. B[x] int: subtype: S  T grp_car: |g| real: set: {x:A| B[x]}  rationals: lelt: i  j < k and: P  Q product: x:A  B[x] less_than: a < b le: A  B not: A implies: P  Q false: False prop: void: Void subtype_rel: A r B uiff: uiff(P;Q) uimplies: b supposing a ge: i  j  strong-subtype: strong-subtype(A;B) primrec: primrec(n;b;c) ycomb: Y lambda: x.A[x] add: n + m p-outcome: Outcome fpf: a:A fp-B[a] eclass: EClass(A[eo; e]) sq_type: SQType(T) guard: {T} fpf-cap: f(x)?z squash: T true: True pair: <a, b> minus: -n
Lemmas :  primrec_wf squash_wf true_wf subtype_rel-equal bag_wf temp-lifting-gen-list-rev_wf nat_wf int_seg_wf not_wf false_wf le_wf member_wf subtype_base_sq int_subtype_base funtype_wf subtype_rel_wf

\mforall{}[B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[bags:k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k)].  \mforall{}[f:funtype(n;A;B)].
    (lifting-gen-rev(n;f;bags)  \mmember{}  bag(B))


Date html generated: 2011_08_17-PM-05_58_39
Last ObjectModification: 2011_05_25-AM-00_56_07

Home Index