{ [A,B:Type]. [f:A  B]. [b:bag(A)].  (lifting1(f;b)  bag(B)) }

{ Proof }



Definitions occuring in Statement :  lifting1: lifting1(f;b) uall: [x:A]. B[x] member: t  T function: x:A  B[x] universe: Type bag: bag(T)
Definitions :  natural_number: $n lambda: x.A[x] Try: Error :Try,  Unfold: Error :Unfold,  CollapseTHENA: Error :CollapseTHENA,  CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  equal: s = t universe: Type member: t  T function: x:A  B[x] bag: bag(T) lifting1: lifting1(f;b) axiom: Ax isect: x:A. B[x] uall: [x:A]. B[x] all: x:A. B[x] lifting-gen-rev: lifting-gen-rev(n;f;bags) funtype: funtype(n;A;T) subtype_rel: A r B uiff: uiff(P;Q) and: P  Q product: x:A  B[x] uimplies: b supposing a less_than: a < b not: A ge: i  j  le: A  B strong-subtype: strong-subtype(A;B) quotient: x,y:A//B[x; y] fpf: a:A fp-B[a] eclass: EClass(A[eo; e]) int: nat: subtype: S  T rationals: real: set: {x:A| B[x]}  false: False implies: P  Q void: Void prop: p-outcome: Outcome int_seg: {i..j} primrec: primrec(n;b;c) apply: f a ycomb: Y sqequal: s ~ t top: Top eq_int: (i = j)
Lemmas :  ycomb-unroll subtype_rel_wf funtype_wf member_wf int_seg_wf le_wf nat_wf false_wf not_wf lifting-gen-rev_wf bag_wf

\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[b:bag(A)].    (lifting1(f;b)  \mmember{}  bag(B))


Date html generated: 2011_08_17-PM-05_59_24
Last ObjectModification: 2011_06_01-AM-00_13_43

Home Index